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Abstract—In many practical scenarios, the sensors present in
mobile robots encounter unknown disturbances due to faults,
spoofing attacks, etc. which can lead to the accumulation of state
estimation errors over time. In this work, we investigate the
design of robust state estimation for systems whose dynamics can
be embedded into matrix Lie groups. We consider time-varying
uncertainty in both the state dynamics and the measurements.
The exact log-linearization of the non-linear estimation error
dynamics results in a non-linear evolution of the error in the
presence of disturbance. We derive the conditions under which
the non-linear evolution of estimation error is bounded and
use Lyapunov stability theory to design a robust filter in the
presence of unknown-but-bounded disturbance. We demonstrate
the effectiveness of our approach through a simulation of rover
dynamics embedded in the SE(2) Lie Group.

Index Terms—Robust State Estimation, Matrix Lie Groups,
Log-linearization, Lyapunov Stability.

I. INTRODUCTION

The state estimation of non-linear systems has been a
challenging problem for decades. The widely adopted method
in the industry for non-linear state estimation is the extended
Kalman filter (EKF). However, the EKF doesn’t provide
any theoretical guarantees for stability for cases where the
dynamics evolve rapidly or where there exists a large deviation
in the initial estimate of the state. For dynamical systems
evolving on Lie groups, a special class of Kalman filter has
been developed by Bonnabel et. al. [1]. These filters are known
as invariant extended Kalman filters (IEKFs). Contrary to the
EKF, the error dynamics of these filters are independent of the
current estimate of the state. This property allows the IEKF
to have improved estimation performance. The IEKF has been
successfully applied to a variety of robotics applications such
as pose estimation, underwater vehicle localization, visual-
inertial navigation, etc. [2]–[4].

Subsequently, the recent works [5]–[7] show the conver-
gence properties of the IEKF for deterministic systems. The
authors employ the log-linear property of the invariant error
dynamics to prove the stability and optimality of the filter. In
[8], the authors have proposed invariant error propagation in
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the discrete-time form on special Euclidean groups, SE(3)
using the approximations to the Baker-Campbell-Hausdorff
formula [9]. The authors in [4], [10] derived the closed-form
expression of the evolution of the invariant error dynamics in
the presence of disturbance for tracking control and estimation,
respectively. The approach followed by the authors in [4]
uses a heuristic to account for the non-linear distortion of
noise or unknown disturbance entering through the input
measurements. In this work, we analyze the properties of
the distortion matrix for matrix Lie groups which have many
applications in the field of robotics. We find the sufficient
condition under which the distortion matrix is norm bounded.
Our main contributions are as follows:

• We first derive the conditions under which the distortion
matrix is norm bounded.

• We design an algorithm to estimate the maximum amplifi-
cation caused by the distortion matrix for a deterministic
system with unknown-but-bounded disturbance. We do
this by calculating the maximum singular value of the
distortion matrix using an LMI-based iterative process.

The rest of the paper is organized as follows. In Section
II, we present the propagation model, log-linearization, and
measurement model for the dynamics embedded in the matrix
Lie groups. Section III presents the design of a robust state
estimator in matrix Lie groups and describes the algorithm for
finding the maximum singular value of the distortion matrix.
We show the effectiveness of the proposed method through
simulations on rover dynamics embedded in the SE(2) Lie
group in Section IV. Finally, Section V summarizes the paper
and proposes future directions.

Notations and Preliminaries: A matrix Lie Group denoted
by G is a subset of N ×N invertible square matrices [11]. It
has the following properties:

IN ∈ G, ∀χ ∈ G, χ−1 ∈ G,
∀χ1, χ2 ∈ G, χ1χ2 ∈ G,

(1)

where IN denotes the identity matrix of RN . For every
element χ ∈ G, there is an associated vector space TχG
that is called the tangent space at χ. The tangent space at
the identity element IN is called the Lie algebra denoted by
g. Its dimension is denoted as d. There is a linear bijection
between Euclidean space Rd to g denoted as [.]∧, such that
for ζ ∈ Rd and [ζ]∧ ∈ g there is a linear map ζ 7−→ [ζ]∧.
∥.∥ denotes the 2-norm and induced 2-norm for vectors and
matrices, respectively. ∥.∥∞ denotes the L∞ norm.



II. PROBLEM SETUP

A. Propagation Model

We consider a mixed-invariant system [8] on G defined as:

χ̇t = χt[u
l
t]
∧ + [ur

t ]
∧χt (2)

where χt ∈ G are the states of the system and [ur
t ]

∧, [ul
t]
∧ ∈ g

are the inputs to the system at time t.
Remark. Note that the mixed invariant dynamics (2) are well
suited for modeling the dynamics of mechanical systems in
which some inputs are measured in a body-fixed frame, i.e.,
ul
t while others are measured in the inertial frame, i.e., ur

t . [8]
Consider two distinct trajectories of (2), χt and χ̂t. We

define two errors ηlt and ηrt as the left and right invariant
errors, similar to [6], as:

ηlt = χ−1
t χ̂t (3)

ηrt = χ̂tχ
−1
t (4)

The idea behind the terminology of invariant errors comes
from the invariance of (3) to left multiplication (χ, χ̄) →
(Γχ,Γχ̄) and (4) to right multiplication (χ, χ̄) → (χΓ, χ̄Γ),
respectively, where Γ ∈ G. The left-invariant and right-
invariant errors have a state-trajectory independent propagation
if they satisfy η̇t = f(ηt) where f(.) denotes a function of ηt.
If χ̂t denotes estimated states, then the left (right) invariant
error ηlt (ηrt ) represents the left (right) state estimation error,
respectively.

˙̂χt = χ̂t[u
l
t +wl]∧ + [ur

t +wr]∧χ̂t (5)

where wl,wr ∈ Rd represent the noise (or unknown distur-
bance) in the input measurements.

Definition 1 (Adjoint Operator). For any χ ∈ G and ζ ∈ Rd,
there exists a linear map Adχ : g→ g defined as Adχ([ζ]

∧) =
χ−1ζ∧χ. The adjoint operation is often represented in a matrix
form as Adχ([ζ]

∧) = [Adχζ]
∧

Definition 2 (Group-Affine System). The system with the
dynamics χ̇ = f(χ) is said to be group affine if it satisfies
f(AB) = f(A)B + Af(B) + Af(I)B where A,B,X ∈ G,
and I is the identity element of the Lie Group. For group-affine
systems, the left and right invariant errors are independent of
the current state [6].

The mixed invariant dynamics defined in (2) satisfies the
group affine property as follows. Let f(χt) = χt[u

l
t]
∧ +

[ur
t ]

∧χt. Then, we have

f(A)B +Af(B)−Af(I)B = (A[ul
t]
∧ + [ur

t ]
∧A)B

+A(B[ul
t]
∧ + [ur

t ]
∧B)−A([ul

t]
∧ + [ur

t ]
∧)B = f(AB)

where A,B,X, I ∈ G. For the dynamical system defined in
(2), it can be shown that the dynamics of the invariant errors
can be written as:

η̇lt = −[ul
t]
∧ηlt + ηlt[u

l
t +wl]∧ −Adχ−1 [wr]∧ηlt (Left) (6)

η̇rt = −ηrt [ur
t ]

∧ + [ur
t +wr]∧ηrt + ηrtAdχ[w

l]∧ (Right) (7)

Definition 3 (Exponential and Logarithm Map). The expo-
nential map of a matrix, exp: g → G is a bijection in the
neighbourhood of 0 ∈ Rd to the neighbourhood of IN ∈ G.
Similarily, the logarithm map is defined as log: G → g. It is
the inverse of the exponential map in the same neighbourhood.

For an element ηt ∈ G, the exponential map provides a
bijection between a neighbourhood of Rd and a neighbourhood
of I ∈ G. The estimation error can be approximated by an
element ζt ∈ Rd such that ηt = exp([ζt]∧).

B. Log Linearization of the error dynamics

For the sake of brevity, we consider only the log-
linearization of the left-invariant error dynamics. The steps
involved for the right-invariant error dynamics follow the same
procedure.

Lemma 1 (Log-linearization of Left-Invariant Error Dynamics
[4], [10]). For the dynamical system defined in (2) and
invariant error dynamics defined in (6), the error dynamics
of the [ζlt]

∧ ∈ g is defined as:

[ζ̇lt]
∧ = A[ζlt]

∧ −Uζ [w
l +Adχ−1

t
wr]∧ (8)

where A = −ad[ul
t]

∧ and Uζ :=
(∑∞

i=0
(−1)i

(i+1)! (ad[ζl
t]

∧)i
)−1

.
We call Uζ the distortion matrix.

Proof. The proof utilizes the results of the derivative of the
exponential map [12]. It is omitted and can be found in [4],
[10].

Remark. It can be observed that when ζt ≈ 0, the matrix
becomes identity Uζ ≈ I, and the results obtained in (8)
becomes equivalent to the results in [6].

We now present the conditions under which the matrix Uζ

is norm-bounded.

Lemma 2. Consider ζ ∈ g to be an element in the Lie algebra.
Let λi denote the eigenvalues of adζ . Then, the eigenvalues of
U−1

ζ are given by 1−e−λi

λi

Proof. Let xi ∈ Rd denote the eigenvector corresponding to
the eigenvalue λi. Then, the following equation holds,

∞∑
i=0

(−1)i

(i+ 1)!
(ad[ζl

t]
∧)ixi =

∞∑
i=0

(−1)i

(i+ 1)!
(λ)ixi (9)

=
1− e−λi

λi
xi (10)

Also, the eigenvalues of the Uζ matrix are equal to λi

1−e−λi
,

when λi ̸= 2kπi, k = ±1,±2, . . . .

Theorem 1. For any ζ ∈ g, if the eigenvalues of adζ denoted
by λi satisfy

λi ̸= 2kπi, k = 0,±1,±2, . . .

The matrix norm ∥Uζ∥ is upper bounded by |λmax(adζ)|
2

where |λmax(adζ)| denotes the magnitude of the maximum
eigenvalue of adζ .



Proof. The proof is given in Appendix A.

Remark. For SE(2), SE(3) and SO(3) Lie groups, the eigen-
values of the matrix adζ exist either in pairs of pure imaginary
values or zero. The magnitude of the maximum eigenvalue of
the matrix adζ for various cases is shown in Table I.

TABLE I: Values of magnitude of maximum eigenvalue of
adζ

Lie algebra Representation Max. Eigenvalue λmax(adζ)
se(2) ζ := (u, ω) |ω|
so(3) ζ := (ωψ , ωθ, ωϕ) (ω2

ψ + ω2
θ + ω2

ϕ)
1
2

se(3) ζ := (u, ωψ , ωθ, ωϕ) (ω2
ψ + ω2

θ + ω2
ϕ)

1
2

As all the angular measurements are computed in the
range of [−π, π], the maximum eigenvalue of the matrix
|λmax(adζ)| < λ0 where λ0 is a constant. Using Lemma
2, we obtain that the matrix norm ∥Uζ∥ is bounded for
ζ ∈ se(2), se(3) and so(3).

C. Measurement Model

We consider the same class of measurement model as
considered in [6]. There are two different types of observation
models, i.e., left and right invariant observations.

Yt = χt(b+ v) (Left Invariant) (11)

Yt = χ−1
t (b+ v) (Right Invariant) (12)

where b ∈ Rd is a known vector and v denotes the noise (or
unknown disturbance) present in the measurements. Consid-
ering the left-invariant observations, the innovation vector zlt
can be defined as,

zlt = χ̂−1
t Yt − χ̂−1

t χ̂tb

= η−1
t (b+ v)− b

(13)

Using the first-order approximation, we get the following
linear relationship for the innovation vector,

zlt
∼= Cζlt + v (14)

where Cζlt := [ζt]
∧b is a linear operation on ζlt .

III. ROBUST STATE ESTIMATION IN MATRIX LIE GROUP

We start with the assumption that unknown disturbances in
the measurements are bounded and derived from a determin-
istic process. Let w̄ and v̄ denote the deterministic unknown
bounded disturbance. Then, we have, ∥w̄∥ ≤ ∥w̄∥∞ and
∥v̄∥ ≤ ∥v̄∥∞. Further, we restrict our analysis to the class
of dynamical systems ζ ∈ g for which |λmax(adζ)| < λ0,
where λ0 is a constant, holds. We rewrite the dynamics
of estimation error propagation in (8) and the innovation
equation in (14) for the deterministic case considering only
the left-invariant disturbance on error. To simplify notation,
let ζ := [ζlt]

∧, u := [ul
t]
∧ and z := zlt

ζ̇ = Aζ +Uζw̄

z = Cζ + v̄
(15)

A. State Estimation Under Linearized Dynamics
The linear Kalman filter theory can be applied to the error

dynamics and the innovation defined in (15). In the standard
Kalman filter theory, the filters are designed for the stochastic
systems with noisy measurements. Here, we consider a deter-
ministic system being perturbed with unknown-but-bounded
disturbances. In the deterministic case, the noise covariance
matrices defined by Q and R becomes the gain tuning
parameters which users are free to choose. The matrix P which
denotes the error covariance in the standard Kalman filter, does
not have a rigorous interpretation in the deterministic case.
However, in practice it still conveys the information regarding
the error propagation which may be useful. The procedure to
compute the Kalman gain follows,

Prediction Step:

ζ̇ = Aζ +Uζw̄

Ṗ = ATP+PA+UT
ζ QUζ

(16)

Update Step:

ζ̇+ = Aζ + w̄ + L(Cζ + v̄)

Ṗ+ = (I− LC)P

S = CPCT +R

L = PCTS−1

(17)

The estimated state for the original system in the Lie group
χ̂l
t ∈ G corresponding to the log linearized error dynamics

(16), (17) after the measurement update has the following
form:

(χ̂l
t)

+ = χ̂l
texp(Lzlt) (18)

The term UT
ζ QUζ in the propagation step (16) depends upon

the error dynamics ζ and modifies the matrix Q. In this work,
we over-approximate UT

ζ QUζ with its maximum singular
value such that UT

ζ QUζ ≤ σ2
max(Uζ)Q. We describe the

procedure to calculate the maximum singular value in the next
subsection.
Remark. In linear Kalman filter theory, inflating the covariance
results in enhancing the robustness of the filter in the presence
of unknown disturbances. However, it might lead to the degra-
dation of performance of the filter (sometimes even divergence
of the filter) if the inflation is not carefully designed.

B. LMIs under bounded disturbance
We use the Lyapunov stability analysis to find the maximum

singular value of the Uζ matrix using an iterative process
described in Algorithm 1 similar to [4]. Let the Lyapunov
function for the linear system in (17) be defined as:

V (ζ) = ζTPζ (19)

where P is a real positive definite matrix. The derivative of
the Lyapunov function can be written as:

V̇ = ζ̇TPζ + ζTPζ̇

= (ζT ĀT + w̄TUT
ζ + v̄TLT )Pζ + ζTP(Āζ +Uζw̄ + Lv̄)

= ζT (ĀTP+PĀ)ζ + 2ζTPUζw̄ + 2ζTPLv̄
(20)



where Ā := A+ LC

Lemma 3. Consider the system defined in (17). If there
exist a continuously differentiable function V (ζ), and the real
numbers α, µ > 0, and σmax := σmax(Uζ) such that

V (ζ) ≥ µ1σ
2
max∥w̄∥2∞ + µ2∥v̄∥2∞ (21)

and
V̇ (ζ, t) ≤ −αV (ζ) (22)

are satisfied, then, for every bounded disturbances w̄ and v̄,
the state ζ is bounded and the set

{ζ ∈ Rd : V (ζ) ≤ µ1σ
2
max∥w̄∥2∞ + µ2∥v̄∥2∞} (23)

is invariant and attractive for the system.

Proof. The proof is given in Appendix B.

Using Lemma 3 and S-procedure [13], we can construct the
following LMI combining (21) and (22) together as,ĀTP+PĀ+ αP P PL

P −αµ1σ
2
maxI 0

LTP 0 −αµ2I

 ≤ 0 (24)

We start with an initial guess of the maximum singular value
of Uζ . We then iteratively solve the LMI till the value of
σmax(Uζ) converges.

Algorithm 1 Maximum Singular Value of Uζ

Require: System matrices A and C, Kalman gain L, con-
stants µ1, µ2, initial guess σ0 and tolerance ϵ

1: σprev ← 0
2: σcurr ← σ0 ▷ Set current as initial guess
3: while |σcurr − σprev| ≥ ϵ do ▷ Iterate till convergence
4: Calculate the reachable set of ζ using σcurr by solving

the LMI given in (24)
5: σprev ← σcurr ▷ Set previous as current
6: Find the maximum singular value σmax(Uζ) by

searching through all the elements in the reachable set.
7: σcurr ← σmax ▷ Set current as maximum
8: end while

IV. SIMULATION

Consider a rover model evolving on the 2D plane given as:

d

dt
px = ux cos θ−uy sin θ,

d

dt
py = ux sin θ+uy cos θ,

dθ

dt
= ω

where px, py denote the positions and θ denotes the heading
angle of the rover. ux, uy, ω represent the linear and angular
velocity, respectively. The system can be embedded in the
2D special Euclidean group, SE(2). The dynamics can be
written in a left-invariant system form χ̇ = χ[u]∧ where χ
represents the state of rover in the SE(2) Lie group and
u = [ux, uy, ω]

T represents the rover’s input, respectively.
The measurements include the linear and angular velocity
and the position measurements, respectively. We consider an
unknown bounded disturbance on the input measurements such

that the estimated state has the form ˙̂χ = χ̂[u + w̄]∧ with
w̄ = [w̄x, w̄y, w̄ω]

T representing the unknown disturbance in
the linear and angular velocities, respectively. The position
measurement has the form described by Y = χb where
χ ∈ G and b = [0, 0, 1]T is a known vector. We do not
consider any disturbance in the position measurement for the
sake of simplicity. For the simulations, we consider that the
rover drives along a circular trajectory of diameter 10m for
40 seconds. To achieve this, a constant velocity control of
u = [0.7, 0, 0.14] is applied. The log-linearized error dynamics
and the innovations in the Lie algebra for the state estimator
of the rover can be described as:

ζ̇ = Aζ + w̄, z = Cζ

A = −

0 −ω uy

ω 0 −ux

0 0 0

 , C =
[
I2 02,1

]
We consider the maximum disturbance in the measured input
in two parts ∥w̄u∥∞ and ∥w̄ω∥∞, one affecting the linear
velocity input ux, uy and other affecting the angular velocity
input ω. For the unknown disturbance, we use sinusoidal
disturbances of varying frequencies. We simulate two different
cases, i.e., a small disturbance ∥w̄u∥∞ = 0.01 and a large
disturbance ∥w̄u∥∞ = 0.05. We use the filter defined in (17)
to compute the gain matrix. In Figure 1, we can see that the
estimated states are bounded under bounded disturbance even
after being influenced by the distortion matrix.
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−2
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True State
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Invariant Set

Fig. 1: Estimated states under bounded input disturbance. Left:
Small Disturbance Right: Large Disturbance

V. CONCLUSION

In this paper, we showed that the log-linearized dynamics
of estimation error in matrix Lie groups evolves non-linearly
in the presence of unknown disturbances. We then derived
the conditions under which the non-linear term in the log-
linearized estimation error dynamics is bounded. We also de-
scribed the procedure for finding the maximum amplification
caused by the non-linear term by computing the maximum
singular value of the distortion matrix using an iterative
process. In the future, we would like to derive the conditions
for stochastic stability of the estimation error dynamics in the
presence of noise or unknown input with known stochastic
properties.
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APPENDIX

A. Proof of Theorem 1

Consider Uζ as the distortion matrix defined in Lemma 1.
Let σmin(Uζ) and σmax(Uζ) denote the minimum and the
maximum singular values of Uζ . Similarly, λmin(Uζ) and
λmax(Uζ) denote the minimum and the maximum eigenvalues
of Uζ . We use the fact that the matrix norm is upper bounded
by the maximum singular value of the matrix.

∥Uζ∥ ≤ σmax(Uζ) (25)

For a square matrix, the maximum singular value is equal to
the minimum singular value of the inverse of the matrix. Con-
sider A = UTΣV, then A−1 = V−1Σ−1U−T = VTΣ−1U
as the matrix U and V are unitary matrices. This implies that,

∥Uζ∥ ≤
1

σmin(U
−1
ζ )

(26)

Using Fan-Hoffman Inequality (see Theorem 2 in [14]) for
real matrices, we have

∥Uζ∥ ≤
1

σmin(U
−1
ζ )
≤ 1

|λmin(U
−1
ζ )|

(27)

It can be observed from lemma 2 that |λmin(U
−1
ζ )| =

1−e−|λmax(adζ)|

|λmax(adζ)| . This implies that

∥Uζ∥ ≤
|λmax(adζ)|

1− e−|λmax(adζ)|
≤ |λmax(adζ)|

2
(28)

which completes the proof.

B. Proof of Lemma 3

Consider the system defined in (17) of ζ ∈ g, We know that
the matrix defined by ∥Uζ∥ is bounded such that,

∥Uζ∥ ≤ σmax(Uζ) (29)

We have ∥Uζw̄∥2 ≤ σ2
max∥w̄∥∞ and ∥v̄∥2 ≤ ∥v̄∥2∞ as the

maximum norms of the disturbances.
Using LaSalle’s Invariance Principle [15], we get the largest

invariant set in (23) for,

V (ζ) > µ1σ
2
max∥w̄∥2∞ + µ2∥v̄∥2∞ (30)

and
V̇ (ζ, t) ≤ −αV (ζ) (31)

which completes the proof.

C. Maximum Singular Value of Uζ for SE(2)

For ζ := (ζx, ζy, ζθ) ∈ se(2), the closed-form expression
for Uζ for SE(2) Lie group can be written as:

Uζ =

a −b ζθζx sin (ζθ)+(1−cos (ζθ))(ζθζy−2ζx)
2ζθ(1−cos (ζθ))

b a
ζθζy sin (ζθ)+(1−cos (ζθ))(−ζθζx−2ζy)

2ζθ(1−cos (ζθ))

0 0 −1

 (32)

where a = ζθ sin (ζθ)
2(cos (ζθ)−1) and b = ζθ

2 .
The maximum eigen value of the matrix Uζ has the form

defined as,

σmax(Uζ) =
ζθ

2(1− cos(ζθ))
(33)


