
Knowledge-Enabled Motion Generation for Complex Manipulation Tasks

Dibyendu Das∗†, Aditya Patankar§, Fumi Honda†, Dasharadhan Mahalingam§, Nilanjan Chakraborty§,
C. R. Ramakrishnan†, and IV Ramakrishnan†

Abstract— We present a knowledge-enabled approach to
manipulation planning for complex manipulation tasks with
objects having similar function, but different geometry. Com-
plex manipulation tasks are characterized by the presence of
constraints on the end effector motion of the robot, which may
be difficult to specify explicitly. Exploiting our previous work
on extracting implicit motion constraints from a kinesthetic
demonstration as a sequence of constant screw motions, we
present a motion planning algorithm for performing the same
task with various objects of similar functionality. Since the
extracted screw geometry of motion is a coordinate-invariant
representation of the motion, it allows us to transfer the
constraints and plan motion across different variations of both
the poses and the geometry of the objects, which are different
from that in the demonstration. A key aspect of our approach
is the design and use of a knowledge representation empha-
sizing the constraints characterizing the tasks. We present
experimental results illustrating the ability of our approach
to use one demonstration to plan paths for task instances with
(functionally similar) different objects placed in different poses.
A video supplement is available at:
https://youtu.be/UdnkbstVGrc

I. INTRODUCTION

Complex manipulation tasks are characterized by the pres-
ence of constraints on the motion of the end-effector (i.e., a
robot gripper or an object rigidly held by the gripper) during
the execution of the task. For example, consider scooping
and pouring cereal from one container to another with a
spoon. There are constraints on the motion of the spoon
so that the robot can scoop the contents successfully, move
them without dropping, and pour them at the appropriate
destination. These constraints are dependent on the task,
as well as the properties of the objects being manipulated,
including their poses (positions and orientations), sizes, and
shapes. Furthermore, different constraints may be in effect
at different points during the task execution. Although the
constraints that characterize complex manipulation tasks may
not always be describable easily (think about the motion for
scooping), such constraints are implicit in any kinesthetic
demonstration of the task execution. With modern robots,
for many complex manipulation tasks, acquiring kinesthetic
demonstrations by moving the robot in a zero-gravity mode
by holding its hand, is straightforward. Thus, the goal of this
paper is to develop a motion planning approach that will use

∗Corresponding author. Email: dibyendu.das@stonybrook.edu
†Affiliation: Department of Computer Science at Stony Brook University,

Stony Brook, NY-11794, USA.
§Affiliation: Department of Mechanical Engineering at Stony Brook

University, Stony Brook, NY-11794, USA.
This work was supported in part by NSF award CMMI 1853454, and a

Stony Brook OVPR Seed Grant.

Fig. 1: An overview of our system consisting of a knowledge base,
a query generation and processing module, and a motion generation
module. The knowledge base consists of an object hierarchy that
encodes the primary functions of the objects, the relevant geometric
information about the objects along with the demonstrations for a
fixed set of tasks.

kinesthetic demonstrations on one instance of a task, and use
it for planning motion on different instances of the same task
with different objects (assuming that the task is achievable
by the new object).

More specifically, given a set of complex manipulation
tasks, a set of functionally similar objects on which these
tasks may be performed, and a small set of demonstra-
tions (assuming at least one for each task), compute a
manipulation plan for any task, specified by the initial and
final pose of all the task-relevant objects, which ensures
satisfaction of the task constraints. A key distinction of our
problem formulation from much of the extant literature [1]–
[15] is that, in the literature, it is implicitly assumed that
the tasks are performed on the same objects on which the
demonstrations are provided. Instead, we present a motion
planning algorithm for performing the same task on various
objects with similar functionality, by exploiting our work
on extracting motion constraints from a demonstration as a
sequence of constant screw motions (or motions in a one-
parameter subgroup of SE(3)) [15]. Although there is some
work on transferring manipulation plans across objects [16]–
[19], they are either (a) for pick-and-place tasks [17]–[19],
or (b) do not use any geometric structure of motion, and
therefore need multiple examples [16] or (c) for very small
amount of motion as is typical in assembly tasks (less than
an inch) [18]. In contrast, our approach works for general
complex manipulation tasks, using just a single demonstra-
tion example, and across wide range of object motion.

Our approach consists of two steps, which are the primary

https://youtu.be/UdnkbstVGrc

contributions of this work. First, we design and use a knowl-
edge representation (KR) for manipulation tasks that allows
us to efficiently store and query the constraints characterizing
the tasks. Thus, it allows us to find task constraints from
demonstration on one object and transfer them to another
object. Although there has been several efforts [20]–[28]
on representing knowledge for robots, including knowledge
for manipulation, no existing KR facilitate task constraint
representation.

Second, by using the fact that the extracted screw ge-
ometry of motion is a coordinate-invariant representation
of the motion, we develop an algorithm to transfer the
constraints and plan motion across different variations of
both the poses, and the geometry of the objects, which are
different from that in the demonstration. Figure 1 gives an
overview of our approach. To the best of our knowledge,
this is the first paper that combines classical ideas in KR
with classical ideas in screw geometry of motion along
with data to plan motion for complex manipulation tasks
across different functionally similar objects. We also present
experimental results illustrating the ability of our approach to
use one demonstration to plan paths for task instances with
different objects placed in different poses.

II. PROBLEM FORMULATION AND SOLUTION OVERVIEW

The objective of this work is to utilize demonstration of
a manipulation task and use them to perform the same task
on objects other than those used in the demonstration itself.
In this section, we formalize the problem, while formalizing
notions of tasks, their associated objects, and demonstrations.
Task-Relevant Objects: Objects whose poses affect ma-
nipulation plans for a task, or whose poses are changed
by the task, are called task-relevant objects. Task-relevant
objects are divided into three categories: Primary objects
are directly manipulated by the robot’s gripper. Secondary
objects are not directly manipulated by the robot but their
poses change during the task execution. Passive objects are
not directly manipulated by the robot but their poses affect
the manipulation plan for task execution.

In the example task of scooping cereal from Bowl A and
pouring it into another Bowl B as shown in Fig 2, the objects
relevant to the scooping task are the grains of cereal being
transferred (secondary object), the spoon used to transfer
the cereal (primary object), and the source and destination
bowls (passive objects).

Fig. 2: Scooping and Pouring task. The task involves scooping the
content from Bowl A and pouring it into Bowl B.

Task Instance: We define a task instance as a triple
(T,Opr, pa), where T is the task label, Opr is the label
of the primary object, pa is the set of passive object-poses,
{(O1,g1), (O2,g2), . . . , (Ok,gk)} for k ≥ 0, where pair
(Oi,gi) is the i-th passive object’s label and pose respec-
tively. The set of task instances is denoted by T . For the
scoop-and-pour task in our running example, a task instance
can be (scoop, spoon, (bowl,gA), (bowl,gB)), where gA and
gB are the poses of bowls A and B respectively.

Demonstration of a Task Instance: A kinesthetic demonstra-
tion is provided by holding the robot’s gripper and moving it
in a zero-gravity mode to perform the task. The joint encoder
data is stored and converted to a sequence of task-space poses
using the forward kinematics map, which represents a path
in SE(3). A task demonstration is a sub-sequence of this
path, consisting of constant screw segments.

A path in SE(3) can be approximated by a sequence
of constant screw segments or 1-parameter subgroups of
SE(3). By using screw linear interpolation between each
neighboring poses on the stored path, we can ensure that all
poses generated the two poses belong to the subgroup , thus
maintaining the screw invariant [29]. The set of kinesthetic
demonstrations D ⊂ T ×M is the set of pairs (t, p) where
t ∈ T is a task instance and p ∈ M is a sequence of constant
screw segments.

Problem Statement: Given a set of complex manipulation
tasks with labels T L, a set of task-relevant objects with
labels OL, a set of demonstrations D with at least one
demonstration for each task label, and a given task instance t,
compute a manipulation plan, i.e., a sequence of joint angles
Θ = ⟨θ1,θ2, · · · ,θm⟩, where θi ∈ Rd is the vector of joint
angles of a d−degree-of-freedom manipulator, such that the
constraints that characterize t are satisfied.

Solution Overview: Given a task instance t, we first
find a set of demonstrations {(t1, p1), . . . , (tm, pm)} ⊆ D,
where the primary and passive objects of ti are “functionally
similar” (see Sec. III) to those of t. We then generate
candidate manipulation plans for t by generalizing from the
guiding poses in pi (see Sec. IV).

III. KNOWLEDGE REPRESENTATION OF OBJECTS AND
TASKS

We now describe the first step of our solution: given a task
to perform, t, how do we identify relevant demonstrations
that can be used to generate manipulation plans for t. We
solve this problem by considering the functional similarity
of objects: two objects are functionally similar if they can
be used interchangeably in a task. We infer functional
similarity from a knowledge base of objects and tasks. The
key attributes of objects, tasks, and the relation between
objects and tasks, which allows us to compute the functional
similarity from the KB is described below.

Knowledge About Objects: Our knowledge base defines
attributes relevant for the manipulation of rigid body ob-
jects. Instances of objects which fully define the value of

Object

Fixed

Surface

Table
Floor

Fixed
Container

Sink
Garbage
Bin

Movable

Articulated

Hinged

Door
Box

Prismatic

Drawer

Helical

Lid

Non
Articulated

Movable
Container

Fluid
Container

Soup Can
Glass
Cup
Bowl

Semi Solid
Container

Bowl
Cereal Box
Sugar Pot
CheezIt Box

Solid
Container

Box

Server

Spoon
Soup
Spoon

Other

Fork

Fig. 3: Fragment of Functionality-based Object Hierarchy in the
Knowledge Base

these attributes are kept in a separate database. Thus the
knowledge base can be considered as defining the schema
for representing object instances. The entire list of attributes
is described in detail in Appendix B. The structure of object
classes is specified in the knowledge base. An example of the
class structure corresponding to a selected set of objects in a
kitchen environment is shown in Fig 3. Abstract classes such
as fixed, movable, and articulated can easily be extended to
objects found in other environments such as warehouse.

Knowledge About Tasks: Complex activities such as “mak-
ing breakfast”, can be decomposed into such primitive tasks
and they are not explicitly considered in this paper. Each task
in the knowledge base has attributes specifying its task label,
label of primary object, and a set of labels corresponding to
its passive objects. Note that pose information is not stored
with tasks in the knowledge base; hence our representation
can be seen as defining schema for task instances.

Relating Objects to Tasks: We represent the relations
between the labels of object and task, as relational ontology
triples of the form subject

relational predicate−−−−−−−−−−→ object. For
example, a scoop task which uses objects in the class
server as its primary object; is represented by the triple:
scoop

has primary objects−−−−−−−−−−→ server. The relationship that spoon
is a subclass of server in the object class structure is given
by the triple spoon is a−−→ server.

Task Similarity: Two object classes O and O′ are similar,
denoted by O ∼ O′, if and only if O and O′ share the same
parent in the object hierarchy. Due to multiple inheritance
(bowl has two distinct parents), similarity relation “∼” is re-
flexive and symmetric, but not transitive. Similarity between
tasks can be defined using a task hierarchy analogously. Two
task instances t = (T,O, pa), and t′ = (T ′, O′, pa′), are
similar (denoted by t ∼ t′) iff T ∼ T ′ and O ∼ O′.

IV. KNOWLEDGE-ENABLED MOTION GENERATION

We now describe the manipulation plan for a task t
generation based on a selected demonstration. Let the
selected demonstration be D = (t′,M ′), where task
t′ =

(
T ′, O′

pr, {(O′
p,g

′
p)}

)
, and a feasible SE(3) path

M ′. Recall that path M ′ = ⟨g′
1, . . . ,g

′
m⟩ is a sequence

of poses of the primary object. The motion correspond-
ing to M ′ is the sequence of constant screw segments

Fig. 4: Schematic sketch showing the computation of the Transfer
Frame, C, for the task of pouring using the pose and geometric
information of the associated objects.〈
(g′

i,g
′
i+1) | i ∈ [1,m− 1]

〉
and implicitly encodes the task-

related motion constraints. The problem then is to generate a
new sequence of guiding poses ⟨g1, . . .gm⟩ [15] conforming
to the motion constraints, to be fed into our ScLERP based
motion planner to generate a motion plan for task t.

While generating guiding poses for t, if the objects are
different from those in the demonstration D′, we account
for the differences in their geometries by introducing an
additional reference frame referred to as the Transfer Frame
for each object. Hereafter the Transfer Frame is denoted by
C and its pose along with the poses of all task-related objects
are elements of SE(3) unless stated otherwise. The pose of
C depends on the geometry of the object. For instance, when
used in a pouring task, the C frames are chosen such that
their poses gC

pr and gC
p lie on the lip of the respective objects

and their projections on the world XY plane lie on the line
joining the projections of gO

pr and gO
p on that plane, see

Fig. 4. Using the poses and geometries of their objects, we
can easily compute Opr

gCpr and Op
gCp , their poses relative

to their object’s reference frame. Combining the geometric
information/attributes of all the objects associated with t and
t′, the following algorithm computes motion, M , from the
demonstrated motion, M ′.

The first step is to determine Cp and Cpr in the demon-
stration task, as described in Fig. 4. The second step is to
represent the poses in M ′ relative to g′

p, the pose of the
passive object in t′. This sequence, denoted by pM

′
=

⟨Dp∗ ⊗g′
i ⊗ Dp | 1 ≤ i ≤ m⟩ where Dp is the unit dual

quaternion of g′
p and Dp∗ is its conjugate1. We refer to

elements of this sequence as pg
′

i.
The next step is to transform poses in pM

′
such that they

represent the motion of Cpr with respect to Cp expressed
relative to Cp. This sequence is computed as

MC =
〈

Op
DCp

∗ ⊗ pg
′

i ⊗Opr
DCpr | 1 ≤ i ≤ m

〉
(1)

In equation (1) above, Op
DCp

∗
is the conjugate of the

unit dual quaternion of Op
gCp and Opr

DCpr is the unit
dual quaternion of Opr

gCpr and ⊗ denotes dual quaternion
product.

1We denote pose g (and sequence of poses M) relative to a another pose
b as bg (resp. gM). Poses relative to the world frame are naturally denoted
by dropping the reference pose b.

(a) Demo #1 (b) Execution of the pour task

(c) Demo #3 (d) Execution of the scoop task

Fig. 5: (a) and (c) are the demonstrations for pour and scoop
tasks respectively. Trials are executed with different combinations
of primary and(or) passive objects with varying poses (even with
raised height).

Note that MC is derived from M ′ based on the poses and
geometries of objects in t′. We also compute Opr

gCpr and

Op
gCp for the objects in the new task instance t. We now

complete the construction of M , the sequence of guiding
poses of t as:

M =
〈

OpD
Cp ⊗ g

′′

i ⊗Opr
DCpr

∗ | 1 ≤ i ≤ m
〉

(2)

where gi
′′

denotes the i−th component of MC , and OpD
Cp

and Opr
DCpr refer to the primary and passive objects in the

new task instance, t.
V. IMPLEMENTATION AND RESULTS

We developed the knowledge-base as a storage of rela-
tional ontology triples of the form subject

relational predicate−−−−−−−−−−→
object. These triples, that bridge the semantic connections
between object-labels and task-labels using their attributes
form the basis of our knowledge base and are represented
using the Web Ontology Language (OWL). To retrieve
information from the knowledge base and to make inference
on them, we used Prolog as our query processing engine. All
the physical experiments were conducted using the Baxter
robot from Rethink Robotics [30].

For the experiments, we considered the set of tasks T L =
{pour, scoop} with the set of objects OL = {soup can,
bowl, glass, cup, CheezIt box, spoon, soup spoon,
ladle}. For the pour task, the primary and passive objects
(as described in section III) are part of the the same set
i.e. {soup can, bowl, glass, cup, CheezIt box}. For the
scoop task, these sets are {spoon, soup spoon, ladle} and
{soup can, cup, bowl} respectively. Not all task instances
that can be realized with OL and T L, are practical; such
examples are:

•
(
pour, (glass,gg,−), (CheezIt box,gcb)

)
: Pour from

a glass into a CheezIt box,
•
(
scoop, (glass,gg,−), (soup can,gsc)

)
: Scoop using

glass from a soup can
etc. As explained in section III, the knowledge-base will
immediately rule out these impractical ones. For the rest of
the task instances we provided 2 demonstrations, each for
the pour and scoop tasks (Fig 5) as follows:

Demo #1
(
pour, (soup can,gsc,−), (bowl,gb)

)
Demo #2

(
pour, (CheezIt box,gcb,−), (bowl,gb)

)
Demo #3

(
scoop, (spoon,gs,−), (bowl,gb)

)
Demo #4

(
scoop, (soup spoon,gss,−), (bowl,gb)

)
For each demonstration, we conducted 15 trials by varying
the objects used and their poses – totaling to 60 trials
for the two tasks as summarized in Table I. While all 4
demonstrations were provided using the left arm of the robot,
the number of trials conducted on the left and right arms
respectively are 8 and 7 for Demo #1, 7 and 8 for Demo #2,
8 and 7 for Demo #3, 7 and 8 for Demo #4. Fig 5 shows a
subset of our trials:
Pouring from a CheezIt box to a bowl i.e.(

pour, (CheezIt box,gcb,−), (bowl,gb)
)
.

Scooping with a soup spoon from a bowl placed at a height
i.e.

(
scoop, (soup spoon,gss,−), (bowl,gb)

)
.

TABLE I: Conducted Experimental Trials

Demo No. No. of Trials Successful Failed
Demo #1 15 12 3
Demo #2 15 14 1
Demo #3 15 12 3
Demo #4 15 11 4

The overall success rate is about 80%. Since the motion
planner does not take collision and joint limit avoidance
into consideration, we observed some failures either due
to contact with the objects in the surroundings or as a
result of the robot arm getting stuck after hitting its joint
limit(s). Additionally, for the scoop task, since we didn’t
consider explicit force control, the pose of the primary
object in the gripper changed while trying to scoop granular
materials. These results nevertheless reinforce our overall
claim of generating robust manipulation plan for a task
without requiring a direct demonstration on its participating
objects.

VI. CONCLUSION

This paper presents a novel approach of generating mo-
tion plans for complex manipulation tasks assisted by a
knowledge-base that allows efficient storage and retrieval
of task constraints. The task constraints are extracted from
kinesthetic demonstrations as a sequence of constant screw
motions. We present an algorithm for using these constant
screws along with the geometric knowledge of all the task
related objects to generate motion plans for manipulation of
functionally similar objects of different shapes and sizes. We
presented results from multiple experimental trials to validate
our planning approach.

In this work we have focused on representing motion for
“primitive tasks” in the KR as a sequence of constant screws,
In future work, we want to pursue hierarchical representation
of tasks that allows us to go from an activity to the motion
required for performing the whole activity. Furthermore, we
would like to explore inclusion of collision avoidance within
the motion planning algorithm [31] to make our approach
more robust.

REFERENCES

[1] Aude G Billard, Sylvain Calinon, and Rüdiger Dillmann. Learning
from humans. Springer handbook of robotics, pages 1995–2014, 2016.

[2] Sylvain Calinon, Florent Guenter, and Aude Billard. On learning,
representing, and generalizing a task in a humanoid robot. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
37(2):286–298, 2007.

[3] Sylvain Calinon, Florent D’halluin, Eric L Sauser, Darwin G Caldwell,
and Aude G Billard. Learning and reproduction of gestures by
imitation. IEEE Robotics & Automation Magazine, 17(2):44–54, 2010.

[4] Claudia Pérez-D’Arpino and Julie A Shah. C-learn: Learning geo-
metric constraints from demonstrations for multi-step manipulation in
shared autonomy. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 4058–4065. IEEE, 2017.

[5] Sylvain Calinon, Antonio Pistillo, and Darwin G Caldwell. Encoding
the time and space constraints of a task in explicit-duration hidden
markov model. In 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3413–3418. IEEE, 2011.

[6] Scott Niekum, Sachin Chitta, Andrew G Barto, Bhaskara Marthi, and
Sarah Osentoski. Incremental semantically grounded learning from
demonstration. In Robotics: Science and Systems, volume 9. Berlin,
Germany, 2013.

[7] Elena Galbally Herrero, Jonathan Ho, and Oussama Khatib. Under-
standing and segmenting human demonstrations into reusable com-
pliant primitives. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 9437–9444. IEEE, 2021.

[8] Shikhar Bahl, Abhinav Gupta, and Deepak Pathak. Hierarchical neural
dynamic policies. arXiv preprint arXiv:2107.05627, 2021.

[9] Micha Hersch, Florent Guenter, Sylvain Calinon, and Aude Billard.
Dynamical system modulation for robot learning via kinesthetic
demonstrations. IEEE Transactions on Robotics, 24(6):1463–1467,
2008.

[10] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal.
Learning and generalization of motor skills by learning from demon-
stration. In 2009 IEEE International Conference on Robotics and
Automation, pages 763–768. IEEE, 2009.

[11] Matteo Saveriano, Felix Franzel, and Dongheui Lee. Merging position
and orientation motion primitives. In 2019 International Conference
on Robotics and Automation (ICRA), pages 7041–7047. IEEE, 2019.

[12] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and
Stefan Schaal. Dynamical movement primitives: learning attractor
models for motor behaviors. Neural computation, 25(2):328–373,
2013.

[13] Riddhiman Laha, Ruiai Sun, Wenxi Wu, Dasharadhan Mahalingam,
Nilanjan Chakraborty, Luis FC Figueredo, and Sami Haddadin. Co-
ordinate invariant user-guided constrained path planning with reactive
rapidly expanding plane-oriented escaping trees. In 2022 International
Conference on Robotics and Automation (ICRA), pages 977–984.
IEEE, 2022.

[14] Riddhiman Laha, Anjali Rao, Luis FC Figueredo, Qing Chang, Sami
Haddadin, and Nilanjan Chakraborty. Point-to-point path planning
based on user guidance and screw linear interpolation. In International
Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference, volume 85451. American Society
of Mechanical Engineers, 2021.

[15] Dasharadhan Mahalingam and Nilanjan Chakraborty. Human-guided
planning for complex manipulation tasks using the screw geometry of
motion. In 2023 International Conference on Robotics and Automation
(ICRA), 2023.

[16] Skye Thompson, Leslie Pack Kaelbling, and Tomas Lozano-Perez.
Shape-based transfer of generic skills. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 5996–6002.
IEEE, 2021.

[17] Wei Gao and Russ Tedrake. kpam 2.0: Feedback control for category-
level robotic manipulation. IEEE Robotics and Automation Letters,
6(2):2962–2969, 2021.

[18] Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. You
only demonstrate once: Category-level manipulation from single visual
demonstration. Robotics: Science and Systems, 2022.

[19] Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake. kpam:
Keypoint affordances for category-level robotic manipulation. In
Robotics Research: The 19th International Symposium ISRR, pages
132–157. Springer, 2022.

[20] Moritz Tenorth and Michael Beetz. Knowrob – knowledge processing
for autonomous personal robots. In 2009 IEEE/RSJ international

conference on intelligent robots and systems, pages 4261–4266. IEEE,
2009.

[21] Moritz Tenorth and Michael Beetz. Knowrob: A knowledge processing
infrastructure for cognition-enabled robots. The International Journal
of Robotics Research, 32(5):566–590, 2013.

[22] Jan Winkler, Georg Bartels, Lorenz Mösenlechner, and Michael Beetz.
Knowledge enabled high-level task abstraction and execution. In First
Annual Conference on Advances in Cognitive Systems, volume 2,
pages 131–148. Citeseer, 2012.

[23] David Paulius, Yongqiang Huang, Roger Milton, William D Buchanan,
Jeanine Sam, and Yu Sun. Functional object-oriented network for
manipulation learning. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2655–2662. IEEE,
2016.

[24] Moritz Tenorth and Michael Beetz. Representations for robot knowl-
edge in the knowrob framework. Artificial Intelligence, 247:151–169,
2017.

[25] Michael Beetz, Daniel Beßler, Andrei Haidu, Mihai Pomarlan,
Asil Kaan Bozcuoğlu, and Georg Bartels. Knowrob 2.0 – a 2nd

generation knowledge processing framework for cognition-enabled
robotic agents. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 512–519. IEEE, 2018.

[26] Paola Ardón, Èric Pairet, Ronald P.A. Petrick, Subramanian Ra-
mamoorthy, and Katrin S Lohan. Learning grasp affordance reasoning
through semantic relations. IEEE Robotics and Automation Letters,
4(4):4571–4578, 2019.

[27] Alex Mitrevsk, Paul G Plöger, and Gerhard Lakemeyer. Ontology-
assisted generalisation of robot action execution knowledge. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 6763–6770. IEEE, 2021.

[28] Qiang Zhang, Yunzhu Li, Yiyue Luo, Wan Shou, Michael Foshey,
Junchi Yan, Joshua B Tenenbaum, Wojciech Matusik, and Antonio
Torralba. Dynamic modeling of hand-object interactions via tactile
sensing. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2874–2881. IEEE, 2021.

[29] Anik Sarker, Anirban Sinha, and Nilanjan Chakraborty. On screw
linear interpolation for point-to-point path planning. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 9480–9487. IEEE, 2020.

[30] Rethink Robotics. Baxter hardware specifications. https:
//sdk.rethinkrobotics.com/wiki/Hardware_
Specifications.

[31] Anirban Sinha, Anik Sarker, and Nilanjan Chakraborty. Task space
planning with complementarity constraint-based obstacle avoidance.
In International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, volume 85451.
American Society of Mechanical Engineers, 2021.

https://sdk.rethinkrobotics.com/wiki/Hardware_Specifications
https://sdk.rethinkrobotics.com/wiki/Hardware_Specifications
https://sdk.rethinkrobotics.com/wiki/Hardware_Specifications

APPENDIX

A. Mathematical Preliminaries

In this section, we present the mathematical con-
cepts of rigid body motion, that we have used through-
out the paper. The set of all rigid body rotations is
known as the Special Orthogonal Group of dimension
3 and is denoted as SO(3). Mathematically, SO(3) ={
R ∈ R3×3

∣∣RTR = RRT = I3,
∣∣R |= 1

}
, where I3 is a

3× 3 identity matrix and |·| is the determinant operator. The
configuration space of a rigid body is the set of all positions
and orientations of the rigid body, known the Special Eu-
clidean Group of dimension 3, and is denoted as SE(3) =
R3 ×SO(3), SE(3) =

{
(R,p) | R ∈ SO(3),p ∈ R3

}
. We

will use the term “pose”, for a rigid body configuration
g ∈ SE(3), and reserve the term “configuration” for a
kinematic chain of rigid bodies, i.e., an articulated object
or a robot. The pose of a rigid body can be expressed by
a 4 × 4 homogeneous transformation matrix as T =

[
R p
0 1

]
where 0 is a 1 × 3 zero vector. The set of all end-effector
configurations of a robot is called the task space of the robot
and it is a subset of SE(3).
Quaternions and Rotations: The quaternions are the set
of hypercomplex numbers, H. A quaternion Q ∈ H can be
represented as a 4-tuple Q = (q0, qr) = (q0, q1, q2, q3), q0 ∈
R is the real scalar part, qr = (q1, q2, q3) ∈ R3 corresponds
to the imaginary part. The conjugate, norm, and inverse of a
quaternion Q is given by Q∗ = (q0,−qr), ∥Q∥ =

√
QQ∗ =√

Q∗Q, and Q−1 = Q∗/∥Q∥2, respectively. Addition and
multiplication of two quaternions P = (p0,pr) and Q =
(q0, qr) are performed as P + Q = (p0 + q0,pr + qr) and
PQ = (p0q0−pr ·qr, p0qr+q0pr+pr×qr). The quaternion
Q is a unit quaternion if ∥Q∥ = 1, and consequently, Q−1 =
Q∗. Unit quaternions are used to represent the set of all rigid
body rotations, SO(3). The unit quaternion corresponding to
a rotation is QR = (cos θ

2 , l sin
θ
2), where θ ∈ [0, π] is the

angle of rotation about a unit axis l ∈ R3.
Dual Quaternions and Rigid Displacements: In general,
dual numbers are defined as d = a + ϵb where a and b
are elements of an algebraic field, and ϵ is a dual unit with
ϵ2 = 0, ϵ ̸= 0. Similarly, a dual quaternion D is defined
as D = P + ϵQ where P,Q ∈ H. The conjugate, norm,
and inverse of the dual quaternion D is represented as D∗ =
P ∗+ϵQ∗, ∥D∥ =

√
DD∗ =

√
PP ∗ + ϵ(PQ∗ +QP ∗), and

D−1 = D∗/∥D∥2, respectively. Another definition for the
conjugate of D is represented as D† = P ∗ − ϵQ∗. Addition
and multiplication of two dual quaternions D1 = P1 + ϵQ1

and D2 = P2 + ϵQ2 are performed as D1 + D2 = (P1 +
P2)+ϵ(Q1+Q2) and D1⊗D2 = (P1P2)+ϵ(P1Q2+Q1P2),
where ⊗ on the left denotes dual quaternion product. The
dual quaternion D is a unit dual quaternion if ∥D∥ = 1,
i.e., ∥P∥ = 1 and PQ∗ + QP ∗ = 0, and consequently,
D−1 = D∗. Unit dual quaternions can be used to represent
the group of rigid body displacements, SE(3). A rigid body
displacement (or transformation) is represented by a unit
dual quaternion DT = QR + ϵ

2QpQR where QR is the unit
quaternion corresponding to rotation and Qp = (0,p) ∈ H

corresponds to the translation.
Screw Displacement: Chasles-Mozzi theorem states that the
general Euclidean displacement/motion of a rigid body from
the origin I to T = (R,p) ∈ SE(3) can be expressed as a
rotation θ about a fixed axis S , called the screw axis, and a
translation d along that axis. Plücker coordinates can be used
to represent the screw axis by l and m, where l ∈ R3 is a
unit vector that represents the direction of the screw axis S,
m = r×l, and r ∈ R3 is an arbitrary point on the axis. Thus,
the screw parameters are defined as l,m, θ, d. The screw
displacements can be expressed by the dual quaternions as
DT = QR + ϵ

2QpQR = (cos Φ
2 , L sin Φ

2) where Φ = θ +
ϵd is a dual number and L = l + ϵm is a dual vector. A
power of the dual quaternion DT is then defined as Dτ

T =
(cos τΦ

2 , L sin τΦ
2), τ > 0.

Screw Linear Interpolation (ScLERP): Using Chasles’
theorem, it can be inferred that any path in SE(3) can be
approximated arbitrarily closely as a sequence of constant
screw motions. To perform a one degree-of-freedom smooth
screw motion (with a constant rotation and translation rate)
between two object poses in SE(3), the screw linear inter-
polation (ScLERP) can be used. The ScLERP provides a
straight line in SE(3) which is the closest path between
two given poses in SE(3). If the poses are represented
by unit dual quaternions D1 and D2, the path provided
by the ScLERP is derived by D(τ) = D1 ⊗ (D−1

1 ⊗
D2)

τ where τ ∈ [0, 1] is a scalar path parameter. As τ
increases from 0 to 1, the object moves between two poses
along the path D(τ) by the rotation τθ and translation
τd. Let D12 = D−1

1 ⊗ D2. To compute Dτ
12, the screw

coordinates l,m, θ, d are first extracted from D12 = P +
ϵQ = (p0,pr) + ϵ(q0, qr) = (cos θ

2 , l sin
θ
2) + ϵQ by

l = pr/∥pr∥, θ = 2atan2(∥pr∥, p0), d = p · l, and
m = 1

2 (p × l + (p − dl) cot θ
2) where p is derived from

2QP ∗ = (0,p) and atan2(·) is the two-argument arctangent.
Then, Dτ

12 = (cos τΦ
2 , L sin τΦ

2) is directly derived from(
cos τθ

2 , sin τθ
2 l

)
+ ϵ

(
− τd

2 sin τθ
2 , τd

2 cos τθ
2 l+ sin τθ

2 m
)
.

Note that θ = 0, π corresponds to pure translation between
two poses and the screw axis is at infinity.

B. Object Attributes Stored in the Knowledge Base

Here we list all the attributes of the objects we are using
in the knowledge base. We only store the attributes in the
knowledge base, their actual values are stored separately in
another database. These attributes include: (a) Geometric
Attributes like pose, gross geometric aspects like height,
length, width, radius of the opening of containers, and
other geometric aspects like special graspable regions on
the object. The values of some of the geometric attributes
like height and radius of the opening are used in our
work for computing the Transfer Frame, C. (b) Inertial
attributes of the object like mass, mass moment of inertia,
(c) Visual attributes like color, visual textures, which may
be important for rendering or visual recognition, (d) Contact
attributes like material, tactile texture, coefficient of friction,
(e) Mobility Attributes that describe whether the object is
movable or fixed, articulated or not, and, if articulated, then

the screw parameters that constrain their motion, (f) Utility
Attributes that encode what kind of tasks the object can be
used in. Utility attributes encode refinements that cannot be
encoded in terms of the class hierarchy alone. For instance,
the most common use of a spoon may be as the primary
object in scoop task, but may also be used to mix liquids
in a cup. While the common purpose can be inferred from
the class structure, utility attributes let us encode secondary
usages without complicating the structure.

Although, we’re not making use of Inertial attributes,
Visual attributes, and Contact attributes in the current
scope of work, nevertheless they may come handy in future
works when we take force control and collision avoidance
into account.

	Introduction
	Problem Formulation and Solution Overview
	Knowledge Representation of Objects and Tasks
	Knowledge-enabled Motion Generation
	Implementation and Results
	Conclusion
	References
	Appendix
	Mathematical Preliminaries
	Object Attributes Stored in the Knowledge Base

