Extending Piecewise Bézier Fitting Methods
to SO(3) and SE(3) for Robot Paths

2™ Juan G. Victores

RoboticsLab UC3M
Madrid, Spain

jegvicto@ing.uc3m.es

1% Ignacio Montesino
RoboticsLab UC3M
Madrid, Spain
imontesi @ing.uc3m.es

Abstract—This paper presents a new extension of a Bézier
fitting method that can now be applied in non-Euclidean spaces.
While the original algorithm was restricted to the 2D plane
due to the dependence on the properties of linear spaces, this
new method overcomes this limitation by leveraging the power
of Lie groups. By incorporating tangent vectors and gradient
descent algorithms, this innovative approach produces accurate
results, even in complex geometric spaces. To test its precision and
performance, the algorithm was applied to digitize the recorded
trajectory of a KUKA LBR 14 IIWA cobot. The results of this
study reveal new possibilities for integration with VR / AR
systems and enabling more complex geometric control schemes.

Index Terms—Bézier curves, Lie Groups, Cobots, VR, AR,
Neuromotor Rehabilitation

I. INTRODUCTION

The use of Bézier curves in representing geometrical data
in computer graphics has been long established. These curves
are particularly advantageous because of the intuitive meaning
of their parameters, which are defined by four points. The first
and last points represent the endpoints of the curve, whereas
the second and third points, or “handles,” determine the
direction of the tangent and its magnitude at those endpoints.

Currently, Bézier curves are commonly used in path plan-
ning for manufacturing robots because they are already a
standard feature in CAD software [1]. They are also utilized
in robot navigation as a means of smoothing out trajectories
to ensure feasibility and smoothness [2].

Moreover, the adoption of virtual reality (VR) technology
in human-robot interaction (HRI) has significantly improved
the interaction capabilities of operators of collaborative robots
(cobots) by providing geometrical information displayed in
their natural environment through VR and augmented reality
(AR) systems [3].

In parallel, the growing applications of robots in neu-
rorehabilitation have shown promising results in upper limb
rehabilitation, where robots can perform repetitive force-
controlled movements with more precision than their human
counterparts [4]. The effectiveness of VR-aided treatments in
motor rehabilitation outcomes further highlights the potential
for improvement in VR-aided robotic rehabilitation [5].

This research has received funding from ROBOASSET, ”Sistemas robdticos
inteligentes de diagndstico y rehabilitacion de terapias de miembro superior”,
PID2020-113508RB-100 financed by AGENCIA ESTATAL DE INVESTIGA-
CION (AEID).

4% Alberto Jardon
RoboticsLab UC3M
Madrid, Spain
ajardon@ing.uc3m.es

3 Carlos Balaguer
RoboticsLab UC3M
Madrid, Spain
balaguer@ing.uc3m.es

(b) Patient’s view inside the VR environment

Fig. 1: Roboasset VR-aided robotic rehabilitation system

To address this gap, this paper presents a novel method for
fitting piecewise Bézier curves to data in SO(3) and SE(3)
spaces. This approach enables a compact and flexible repre-
sentation of end-effector trajectories captured in the context of
motor rehabilitation.

In the Roboasset project, we aim to give physiotherapists a
fully integrated robotic motor rehabilitation system gamified
through the use of VR. The system is shown in Figure 1. It
is in this system that the need of a geometrical description
of recorded trajectories became apparent. Both to measure the
deviations from the trajectory in a geometrically meaningful
way and as a first step to implement control schemes along
the recorded trajectories.

Fig. 2: A representation of a fitted Bézier curve on the sphere.

II. LIE GROUPS AND BEZIER CURVES

A Bézier curve is a smooth parametric curve defined by a
set of control points. When no degree is specified, the curve
is assumed to be a cubic Bézier curve defined by four control
points. The curve can be obtained by recursively performing
linear interpolation between the points; this is known as
DeCasteljau’s algorithm.

BY(t) = p; (1)
B, (1) = (1= t)B,(t) + B, (t). 0)
In the case or R™, the formulation can be reduced to an
expression using Bernstein polynomials, but not in the case of
SO(3) and SE(3).
The expression of DeCasteljau’s algorithm for Riemmanian
manifolds and Lie groups is given by [6], which uses the
geodesic interpolation between points

P(t) = X -exp(log(X 1Y) - t). (3)

In equation 3, X and Y are elements of the Lie Group.
The element X 'Y can be interpreted as the element Y as
seen from the frame of reference of X. By performing the log
map, we obtain the vector of the Lie algebra that represents
the difference between the two elements. The exponential
map is then applied to obtain the element that represents the
interpolation between the two elements at a moment ¢ between
0 and 1. To obtain the Bézier curve at a time ¢ we apply the
same procedure recursively using the interpolation in eq. 3
instead of eq. 2. A more thorough explanation of Lie groups
and Lie algebra for robotics can be found in [7].

Fig. 3: Finding the tangent vector equivalents of a neighbor-
hood around an element of G

III. ALGORITHM

The algorithm is an extension of the one presented in [8]
where the objective was to digitize hand-drawn sets of R?
points into sets of Bézier curves.

For this the algorithm consisted of the following steps,
which will need to be extended to work with our Lie groups:

1) Define the first and last point of the curve as the first
and last points of the set of points.

2) Find the tangent at the first and last point by subtracting
the neighboring points.

3) Obtain the other two control points along the geodesics
defined at the endpoints by the aforementioned tangents.

4) Find a parametrization u; for each point p; in the set of
points, that generate the curve point g; closest to it.

5) Iterate over the last steps until the error is below a certain
threshold or the max number of iterations is reached.

6) If the error is still above the threshold, split the set
of points at the point of maximum error and repeat
the process. The tangent at the split point is computed,
and then, given as the tangent of the endpoint and the
beginning point of the new set. So as to ensure G1
continuity.

A. Finding the tangent vectors

To find the tangent vector of the trajectory at a point, py we
first define a neighborhood of NV points around it. Now each
of those points is expressed as a vector in the tangent space
of pg by performing the modified “minus” operation defined
by [7]

X &Y =log(X7'Y) € TxG)

This is just a shorthand notation for the operation
log(X 1Y), which, as described before, obtains the element
Y as seen from the frame of reference of X, and lifts it to the
tangent space of X.

If the neighborhood of points were all along the same
geodesic starting from pg, their tangent vectors would be
collinear. We can find a decent approximation of the tangent
vector by finding the best-fit line of the points in the tangent
space.

An efficient way to find said best fit line is by using the
singular value decomposition (SVD) of the matrix of points.
The SVD of a matrix A is defined as

A=UXV —T. (5)

Here U and V are orthogonal matrices and ¥ is a diagonal
matrix. If we construct A in the following way

L1 — Tm Y1 — Ym 21 — Zm
T2 — ITm Y2 — Ym 22 — Zm

A=) . . (6)
IN —Zm YN —Ym ZN — Zm

where x;, y; and z; are the coordinates of the ¢-th point in
the neighborhood and z,,, y,, and z,, are the coordinates of
the mean of all neighboring points.

The columns of V' will be the principal directions of the
points in the tangent space. The first one will be the direction
of the best-fit line.

B. Finding the control points

Once the tangent vectors at the endpoints of the curve are
found, the other two control points must take the form

p1 = po - exp(A1 - o) @)
p2 = p3 - exp(As - £3) (8)

Where py and p3 are the end points of the curve, ¢y € T},,G
and t3 € T, G are the tangent vectors at those points, ang A;
and A are two real positive numbers.

In the original paper [8] a matrix form of the regression
problem is presented by operating on the Bernstein polynomial
expression of the curve. This is not possible in our case, since
the equivalence exp(v + u) = exp(v) - exp(u) does not hold
for noncommutative Lie groups. This prevents the curve from
being defined as a Bernstein polynomial in the Lie algebra.

Similarly to 4 we can define a modified “plus” operation as

X<|—>v:X-exp(v)€G 9

where X € (G and v € TxG. This shorthand notation allows
us to formulate the optimization problem is defined as

(10)

N
/{rlngz | B(ui) @I%‘HZ
=1

with B := {By, By &> Aovo, Bs & Asvs, Bs}

where B(u) is the point given by computing the DeCasteljau
at time wu,; with the control points B.

The optimization problem stated in equation 10 poses
certain complexities. The computation of the Jacobian of
the objective function is a computationally intensive task, as
it requires recursive differentiation of the exponential map.
Additionally, the problem is constrained by the log function,
which limits the range of the parameters A\; and A,. For
example, in the case of SO(3), the value of ||\;#;|| must fall
within the range of (0,7) [9].

Therefore, the chosen optimization method
will be L-BFGS-B [10]. This variant of the
Broyden—Fletcher—Goldfarb—Shanno ~ (BFGS) algorithm

accommodates bound constraints. The algorithm leverages an
approximation of the Hessian matrix of the objective function
to determine the minimum.

For the first iteration, the parametrization u; for each point
p; is sampled uniformly by the formula

1
N-1

(11

U; =

C. Recomputing the parametrization

Having found the optimal control points with the first naive
parametrization, we can now recompute the parametrization
of the points by solving the following optimization problem

N
H;IHZ (1B (u:) @ pill?
=1

with B := {By, By &> Aovo, Bs & Asvs, Bs}

(12)

Since this is a single variable minimization, the problem
consists of finding the roots of the derivative. Since the curve
is defined for any real value of u, we can take a very small
step size to compute an accurate numerical approximation of
the first and second derivatives of the objective function.

Using the Newton-Raphson method, we can find the roots
of the derivative of the objective function. The update rule for
the parameter u; is given by

)

13
f”(ugk)) (13)

WD) =) _

7

D. Review of the algorithm

We now have a complete algorithm to fit a set of Bézier
curves controlled by a few hyperparameters:

e cmax. The maximum distance between the curve and a
point.

e N: The maximum number of times the curve can be
split. (This can alternatively be defined as the minimum
number of points needed to generate a sub curve).

¢ Nj: The maximum number of iterations for the optimiza-
tion problem.

IV. EXPERIMENTAL RESULTS

In order to verify the accuracy and effectiveness of the
algorithm, we tested the fitting process on a set of trajectories
captured on a real collaborative robot. First, we recorded an
arbitrary trajectory of the end effector of a KUKA IITWA robot,
which was captured at a rate of 100Hz. During this process, we
recorded both the position and orientation of the end effector.
In total, we captured 1466 points for this trajectory, which we
subsequently used as input for our algorithm.

Fig. 4: Upper limb movement capture platform using a KUKA
LBR 14 IITWA robot

To implement the algorithm, we utilized C++ and the
manif [8] library for computations involving Lie groups.
Additionally, we established certain parameters to guide the
optimization process. Since SE(3) is the Cartesian product of
SO(3) and R?, it is more intuitive to define the interpolation
as two curves, one in SO(3) and one in R3, each with
its own set of parameters. For example, for R3, we set the
maximum number of fitting iterations before splitting to 100.
After conducting extensive testing, we found no benefit in
further increasing this value. For SO(3), however, we set the
maximum number of fitting iterations before splitting to 2,
since L-BFGS-B already iterates to find the optimal solution.
We also set the target €.« to 0.005 m for R3 and 0.05Rad
for SO(3).

The captured trajectory consisted of 1466 points and orien-
tations. The algorithm took 1.58 seconds to fit the curves using
9 R3 Bézier curves and 6 SO(3) Bézier curves. We then used
these curves to generate a fitted spline for the input trajectory.
Figure 5 illustrates the results of our testing process, displaying
the original R? path in green and the interpolated path in red.
The accuracy of the SO(3) is shown as sets of axes at each

point along the path. As can be seen, the robot’s end effector
coincides at each point along the path. This allowed us to
visually verify the effectiveness of our algorithm in producing
a fitted spline that closely approximates the original trajectory.

Fig. 5: Accuracy of the Captured SE3 Trajectory

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an extension of a well
known algorithm for fitting Bézier curves to data points in
Euclidean space to the case of Lie groups. The result is an
efficient algorithm, fast enough to be used online with very
little delay to provide visual feedback of trajectories, as well
as a building block for more complex human robot interaction
applications.

Currently, the algorithm has been tested on the Lie groups
RY, SO(3) and SE(3). Other Lie groups could have been
explored in the futures, with special interest in one which
preserves information about the null space of redundant robots,
such as SFE(3) x RN. Another option is the group of dual
quaternions, to combine SO(3) and R*® and using Screw
Linear Interpolation, as shown in [11], to generate the Bézier
curves.

Another possible extension is to parametrize the curve ac-
cording to the arc-length of the curve instead of the parameter,
u which does not produce a uniform speed along the curve.
This would allow the design of control strategies using the
geometric properties of the curve.

REFERENCES

[1] C. Zhou, B. Huang, and P. Frinti, “A review of motion planning
algorithms for intelligent robots,” Journal of Intelligent Manufacturing,
vol. 33, pp. 387424, Feb. 2022.

[2]

[3]

[4]

[7]
[8]

[10]

(1]

A. Ravankar, A. A. Ravankar, Y. Kobayashi, Y. Hoshino, and C.-
C. Peng, “Path Smoothing Techniques in Robot Navigation: State-of-
the-Art, Current and Future Challenges,” Sensors (Basel, Switzerland),
vol. 18, p. 3170, Sept. 2018.

M. Dianatfar, J. Latokartano, and M. Lanz, “Review on existing VR/AR
solutions in human-robot collaboration,” Procedia CIRP, vol. 97,
pp. 407411, Jan. 2021.

E. D. Oiia, R. Cano-de la Cuerda, P. Sanchez-Herrera, C. Balaguer, and
A. Jardon, “A Review of Robotics in Neurorehabilitation: Towards an
Automated Process for Upper Limb,” Journal of Healthcare Engineer-
ing, vol. 2018, p. €9758939, Apr. 2018.

J. A. Feitosa, C. A. Fernandes, R. F. Casseb, and G. Castellano, “Effects
of virtual reality-based motor rehabilitation: A systematic review of
fMRI studies,” Journal of Neural Engineering, vol. 19, Jan. 2022.

F. C. Park and B. Ravani, “Be “zier Curves on Riemannian Manifolds
and Lie Groups with Kinematics Applications,” Journal of Mechanical
Design, vol. 117, pp. 36-40, Mar. 1995.

J. Sola, J. Deray, and D. Atchuthan, “A micro Lie theory for state
estimation in robotics,” Dec. 2021.

P. J. Schneider, “An algorithm for automatically fitting digitized curves,”
in Graphics Gems, pp. 612-626, USA: Academic Press Professional,
Inc., Aug. 1990.

J. L. Blanco-Claraco, “A tutorial on SE(3) transformation parameteriza-
tions and on-manifold optimization,” Apr. 2022.

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-BFGS-
B: Fortran subroutines for large-scale bound-constrained optimization,”
ACM Transactions on Mathematical Software, vol. 23, pp. 550-560,
Dec. 1997.

A. Sarker, A. Sinha, and N. Chakraborty, “On screw linear interpola-
tion for point-to-point path planning,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 9480-9487.
ISSN: 2153-0866.

