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Abstract—This paper overviews different pose representations
and metric functions in visual odometry (VO) networks. The
performance of VO networks heavily relies on how their architec-
ture encodes the information. The choice of pose representation
and loss function significantly impacts network convergence
and generalization. We investigate these factors in the VO
network DeepVO by implementing loss functions based on Euler,
quaternion, and chordal distance and analyzing their influence
on performance. The results of this study provide insights into
how loss functions affect the designing of efficient and accurate
VO networks for camera motion estimation.

Index Terms—Visual Odometry, Deep Learning, Lie algebra,
Riemannian geometry

I. INTRODUCTION

Several deep learning architectures have arisen in the last
decade to support learning from spatio-temporal data, which
have allowed the implementation of architectures for end-to-
end visual odometry (VO) methods [1]. PoseNet [2] introduced
end-to-end visual localization with a convolutional neural
network (CNN) pretrained for classification. Later architec-
tures introduced optical flow networks followed by CNN pose
regressors [3], [4], long short-term memory (LSTM) units [3]
and self-attention mechanisms [5].

The choice of loss function significantly impacts the infor-
mation encoded by the network. In VO, the main challenge
to address when implementing loss functions is the rotation
representation [6]. The supervised pose regression networks
usually rely on the Euclidean loss for rotation and translation
[2], [3], [5]- These methods implement different variations of
a weighted sum of the Euclidean loss for the rotation and
translation components. PoseNet [2] and Atloc [5] represent
rotations with quaternions and DeepVO [3] outputs Euler
angles.

Using the state-of-the-art VO network DeepVO as back-
bone, this research examines various pose representations and
their corresponding loss functions, as well as the impact they
have on the network’s convergence and generalization ability.

II. GEOMETRY FOR VISUAL ODOMETRY

The geometry representation that best models the perspec-
tive projection from camera imaging is projective geometry.
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Projective transforms only preserve type (points or lines),
incidence (whether a point lies in a line) and cross-ratio.
Euclidean geometry is a subset of projective geometry that, in
addition to that, also preserve lengths, angles and parallelism.
There are two other hierarchies between them: affine and sim-
ilarity geometry, as shown in Fig. 1. Projective reconstruction
leads to distorted models; thus visual localization algorithms
aim to estimate the Euclidean structure of the scene [7].
Moreover, VO requires quantifying differences in translation
and orientation between camera frames.

A. Pose parameterization and optimization

Pose representation involves translation and rotation with
respect to a reference frame, which can be parameterized using
Euler angles, quaternions, or rotation matrices. Euler angles
are intuitive but can lead to numerical instabilities and non-
linearities, making optimization difficult. Quaternion is a better
representation when compared to Euler angles which avoids
gimbal lock problems and is more numerically stable. Unitary
quaternions belong to the special unitary group SU(2). How-
ever, quaternions double-cover the space of rotations. Rotation
matrices belong to the special orthogonal group SO(3), and
their combination with position information forms the special
Euclidean group SFE(3). Unlike the quaternions, the elements
in the SO(3) group uniquely represent rotations in the space.
Rotation and transformation matrices can be considered ele-
ments of a Lie group, forming a smooth manifold that can be
smoothly parameterized.

B. Distances in the Euclidean space

Learning-based VO requires finding an appropriate metric
that can accurately and robustly quantify the quality of the
estimated camera motion. In mathematics, a metric or distance
d(A,B) is a way to measure the distance between two
points on any set. Furthermore, it must satisfy non-negativity,
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Fig. 1. Hierarchy of geometries. Euclidean preserves areas, angles and
lengths, the similarity preserves ratios of lengths. The affine preserves
volumetric ratios and parallelism. The projective preserves intersections and
tangents.
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identity, symmetry, and triangle inequality properties. In dif-
ferential geometry, it is specifically defined on a geometric
space, e.g., a Euclidean space or a Riemannian manifold.

Translations have a straightforward geometric interpretation
as displacements in space. They can be measured by satisfying
the properties of a metric by the Euclidean distance. On
the other hand, rotations do not have a direct geometric
interpretation and require other mechanisms to find a metric.
Therefore, the following section discusses prevalent metrics
and pseudo-metrics used in the literature for the proposed
parameterizations for orientations.

C. Distances in the vector space of orientations

Some well-known distances used for 3D rotations in the VO
and SLAM literature are the Euclidean distance, the geodesic
distance and the cordal distance, applied to the different
orientation parameterizations as follows [8]:

1) Distance on Euler angles: two three-dimensional vectors
of Euler angles ¢4 and p yield the Euclidean distance as:

de(pa,pn) = llpa —vBl3 (1)

with || - ||2 the Lo norm. However, it cannot be considered a
metric as it does not satisfy the triangle inequality. This in-
duces singularities during the optimization, potentially leading
to suboptimal solutions or slow convergence.
2) Quaternion distances:
a) Euclidean distance: Two unit quaternions ¢4 and gp
yield the Euclidean distance:

dq(ga,a8) = llaa — a5l3 2)

Due to the quaternion’s double-cover, ¢p and —gp represent
the same rotation but do not retrieve the same distance, i.e.:
d(qa,qs) # d(qa,—gp). This matter can be addressed by
redefining the quaternion distance as:

dqe(qa, qp) = minge(—1,11yllga — bzl 3)

which defines a pseudo-metric since it does not satisfy the
identity property. Furthermore, it incorporates the problem
of adding a binary variable to the equation, hindering the
computational analysis.

b) Geodesic distance: The Riemannian metric on SU(2)
induces a distance on the quaternion manifold obtained as the
geodesic distance:

dyg(aa,a8) = |llog(az an)|l3 )

3) Distances in Lie groups:

a) Geodesic distance: The distance between two rota-
tions R4 € SO(3) and Rg € SO(3) can be obtained as
the rotation angle 645 corresponding to the relative rotation
RAB = RERBZ

T _
do(Ra, Rp) = |larccos <tT(RA]2%B)1> I 5)

The norm of the exponential coordinates is the rotation angle;
thus, the previous metric can be written as:

dg(Ra, Rp) = |[log(R4Rp)"|| = |log(RERA)"||  (6)

This distance is geodesic, i.e., the length of the minimum path
between R4 and Rp on the SO(3) manifold. The geodesic
distance defines a Riemannian metric that satisfies the metric
properties. Moreover, it defines a smooth metric since both the
logarithmic map and the Euclidean norm are smooth. However,
it brings more computational expense and numerical instability
from the logarithm map for a set of big rotations.

b) Chordal distance: The chordal distance between two
rotations R4 € SO(3) and Rp € SO(3) is defined as [6]:

de(Ra,Rp) = |Ra — Rpllr = |[RaRE —Illr (7

with || || the Frobenius norm. In most applications, minimis-
ing the square of the chordal distance is preferred. The chordal
distance is not a Riemannian metric, but it complies with the
four metric requirements while being more numerically stable
and simpler than the geodesic distance [9].

III. EXPERIMENTS

Considering the distances introduced above, this section
proposes a series of experiments to compare them.

A. Experiment setup

The network chosen to investigate the influence of the pose
loss functions in the model’s performance is DeepVO [3].
DeepVO yields a pre-trained FlowNet [10] CNN followed
by two LSTM units. DeepVO is well suited for the proposed
experiment since it only requires a loss purely dependent on
the distance between the target and the estimated pose.

Four experiments are carried out, consisting in training
DeepVO under the same training setup for three different
orientation parameterizations: Euclidean angles, quaternions,
and SO(3) yielding the SE(3) pose.

The three different parameterizations are used to train four
models with four different loss functions. The loss function
proposed in DeepVO corresponds to the mean squared error
(MSE) of the Euclidean loss, with the orientation represented
as Euler angles:

1 N M
Loriginal = NZZHH*tzH%Jrle%*@zHg (8)

i=1 j=1

where for each observation 4, ¢; and ; are the estimated values
for rotation and orientation with ground truth ¢; and ¢;. M
and N correspond to the sequence length and the number of
observations, respectively.

The Euclidean loss for the pose represented as translation
and quaternion vectors is obtained as:
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i=1 j=1

with ¢; and ¢; the ground truth and estimated quaternions. For
this experiment, the output head of the network is modified to
provide seven outputs corresponding to the three translation



elements and the four rotation elements. The geodesic loss for
the quaternion parameterization yields:

N M
1 - -
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Finally, the chordal loss for the SE(3) representation is
obtained as:
| MM
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i=1 j=1

with R; and R; the ground truth and estimated SO(3) rotations.
It is to be noted that the rotation matrix is obtained from the
network’s output vector through the exponential map.

The three constants ki,ks, k3, and k4 are experimentally
determined. They aim to equate the order of magnitude of the
orientations to that of the translations. For these experiments,
]{1 = 100, ]{?2 = 14, ]{?3 = 100, and k4 = 153.

The training is carried out with the KITTI VO dataset [11].
We select the sequences 00, 02-08, and 08 as training set
and the sequences 09 and 07 as validation set. With a pre-
trained FlowNet as initial checkpoint, the network is trained
for up to 200 epochs with a 20% dropout and using an Adam
optimizer with a learning rate of 0.001, as originally proposed
by DeepVO [3].

B. Results and discussion

The train and validation losses for the three experiments are
shown in Fig. 2. First, the graphic illustrates a lack of data for
adequate convergence. Due to time limitations, feeding more
data to the network and tuning the regularization parameters
are left as future works. Instead, these experiments are taken
as a pure comparison of the losses’ performance under the
same conditions. Figure 2 shows a better convergence of
the loss function under the chordal loss from the SE(3)
parameterization, evidenced by a steady decrease over the 200
epochs. This decrease is present in training and validation,
which indicates better generalization. As opposed to that, the
loss under the Euler angle parameterization presents a rapid
but mild decrease of the loss for the first epochs during
training, to then enter a flat area. The loss under the quaternion
parameterization shows a very slow convergence where it
seems to converge to a local minimum between epochs 25
and 100, to then steadily decrease again.

The trajectory plots in Fig 3 show the superiority of
the models trained with quaternions and SE(3) representa-
tion versus the original implementation. The Euler angles
representation presents big rotation shifts even in the data
seen during training. The model using quaternions and SE(3)
representation shows similar performance. However, the model
using SE(3) shows a better resemblance of the orientations in
the trajectories that becomes more noticeable in Trajectory
09. We observe big orientation drifts under steep rotations on
the Trajectories 03 and 10. This is due to the low presence
of steep rotations in the dataset, which hinders learning such
data distributions. In conclusion, the SE(3) representation with

a chordal loss presents the best performance under the fastest
convergence.

IV. CONCLUSIONS

This study demonstrates that using the chordal loss un-
der SE(3) pose representation provides better convergence
and generalization compared to the Euclidean loss under
quaternion and Euler angles parameterization. This highlights
the strong influence of the loss function on the information
encoded by the network, and how the choice of loss function
conditions its ability to converge and generalize. Future works
will involve adding more data, performing hyperparameter
optimization, and implementing more losses in the Riemannian
and Euclidean space.
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Fig. 2. Top: pose loss values for the pose loss during train and validation.
Bottom: Translation and rotation losses (without weighting). Note that the
rotation losses do not have the same geometric interpretation.
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Fig. 3. From left to right, trajectories used for training, validation, and test.
The plot shows the ground truth versus estimated pose for DeepVO using the
proposed pose representations and loss functions.
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