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Abstract—This paper presents an approach that employs log-
linearization in Lie group theory and the Newton-Euler equations
to derive exact linear error dynamics for a multi-rotor model,
and applies this model with a novel log-linear dynamic inversion
controller to simplify the nonlinear distortion and enhance the
robustness of the log-linearized system. In addition, we utilize
Linear Matrix Inequalities (LMIs) to bound the tracking error
for the log-linearization in the presence of bounded disturbance
input and use the exponential map to compute the invariant set
of the nonlinear system in the Lie group. We demonstrate the
effectiveness of our method via an illustrative example of a multi-
rotor system with a reference trajectory, and the result validates
the safety guarantees of the tracking error in the presence of
bounded disturbance.

Index Terms—Log-Linearization, Dynamic Inversion, Invari-
ant Set

I. INTRODUCTION

Multi-rotors have played an important role in the Urban Air
Mobility (UAM) system and have been deployed in various
applications, including package delivery and aerial inspections.
However, the safety of these vehicles is critical, and methods
for safety verification must be developed to ensure public
trust and acceptance of UAM. One promising approach is
to utilize the invariant set for the dynamical system [1]–[3],
which represents a set that the system will never leave if the
initial conditions are within the set. This technique can be
highly effective in ensuring the safety of multi-rotor systems,
making them more reliable and trustworthy for a range of
applications.

Lyapunov functions can be used to construct invariant sets
for dynamical systems [2]. While nonlinear systems can be
analyzed using hand-crafted Lyapunov functions or Lyapunov-
based control design methods like backstepping control [4],
these approaches are challenging to generalize and can be
tedious to implement. For linear systems with bounded input,
however, invariant sets can be constructed using backstepping
control or Linear Matrix Inequality (LMI) techniques [5].
Although linear time-varying backstepping exists, it requires
the disturbance to be a known function of time; however, the
function of time for the disturbance is unknown in the multi-
rotor system, the linear time-varying backstepping cannot be
used in our case. Since the use of LMI is a more efficient
method for finding the Lyapunov function and constructing
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the invariant set, we propose utilizing the linearization of the
multi-rotor system to apply LMI techniques and construct the
invariant set.

The general linearization technique cannot give an exact
solution, and thus the invariant set obtained must be over-
approximated to account for linearization error. To address
this issue, we employ the log-linearization technique from Lie
group theory [6], [7]. While previous studies [6], [8] have
utilized the log-linear property for linearization, this technique
only provides an approximation, not an exact solution. In our
previous work [9], we proposed a generalized method for
exact linearization of the nonlinear kinematics model in the
Lie group to a corresponding linear system in the Lie algebra,
using the derivative of the exponential map [10]. Since the
result is an exact linearization, it allows us to analyze the
nonlinear dynamics in a more efficient way using the linear
dynamics in the Lie algebra, which is a vector space. A similar
work in [11], derives the exact log-linearization for a specific
Lie group, SE2(3), our approach in [9] applies to all matrix
Lie groups. Since the kinematic model alone is insufficient for
describing the behavior of a multi-rotor system, we employ
the SE2(3) Lie group [6], [12], which is a group of double
homogeneous matrices, as part of our model.

This paper presents an efficient method to compute the
invariant set for a nonlinear multi-rotor system with feedback
control and subject to disturbance. Our method is based on log-
linearity in the SE2(3) Lie group and LMI theory. To achieve
this, we first embed the multi-rotor model in the SE2(3) Lie
group and employ log-linearization to the left-invariant error
dynamics. However, since the differential equation governing
the evolution of the angular velocity derived from the Newton-
Euler equations cannot be embedded in the SE2(3) Lie group,
we treat this as a separate sub-system. Moreover, to further
enhance the robustness and simplify the system, we follow
our previous work [9] to design a log-linear dynamic inversion
based control law for a multi-rotor with provable safety
guarantees in the presence of bounded disturbance. Previous
work in [13] shows a succinct synopsis of Lie group theory as
it applies to state estimation and in addition, also the control
methods we use in this paper.

The rest of this paper is organized as follows. In Section II,
we embed the three-dimensional multi-rotor model in the
SE2(3) Lie group. In Section III, we derive the error dynamics
of log-linearization and the angular velocity, and design the
dynamic inversion control for both systems. In Section IV,
we illustrate the simulation results of the invariant set for our
model with two different scenarios. Finally, in Section V, we



present our concluding remarks and immediate future works.

II. VEHICLE DYNAMICS EMBEDDED IN SE2(3) LIE GROUP

Consider the multi-rotor model evolving in a 3D space given
as:

d

dt
p = v,

d

dt
v = g +Ra,

d

dt
R = Rω×,

d

dt
ω = α (1)

where R ∈ R3×3 and p ∈ R3×1 denote the vehicle attitude
and position, ω ∈ R3×1 and v ∈ R3×1 denote the angular
and translational velocity, g ∈ R3×1 denotes the gravity,
a ∈ R3×1 and α ∈ R3×1 denote the angular and translational
acceleration respectively. ω× represents the skew symmetric
matrix of ω.

From Barrau’s paper [6], we can embed the attitude, posi-
tion, and translational velocity to a group of double homoge-
neous matrices SE2(3). The dynamics can be written in the
mixed-invariant system [9], [14], as follow:

Ẋ = X(C + [νv]
∧) + ([νg]

∧ − C)X (2)

where X represents the state of the 3D vehicle in the SE2(3)

Lie group. Note that νv =
[
0 a ω

]T
and νg =

[
0 g 0

]T
may be functions of time and represent the vehicle input,
including feedback control and disturbance, and g denotes

gravity. C =

03×3 03×1 03×1

01×3 0 1
01×3 0 0

 is a constant matrix,

which embeds the kinematic equation d
dtp = v.

The SE2(3) Lie group can be represented by a matrix of
the form:

X =

R v p
0 1 0
0 0 1

 (3)

The corresponding se2(3) Lie algebra can be represented by
a matrix of the form:

[x]∧ =

ω× a v
0 0 0
0 0 0

 (4)

where x =
[
v a ω

]T
is the element in the Lie algebra, and

[·]∧ indicates the wedge operator that maps the element from
R9 to the se2(3) Lie algebra. Although the angular velocity, ω,
cannot be embedded in the SE2(3) Lie group, we can consider
the dynamics of the angular velocity as a separate sub-system
in our application.

III. CONTROL DESIGN FOR ERROR DYNAMICS

In this section, we first derive the log-linear property for the
error dynamics in the SE2(3) Lie group. Based on the log-
linear property, we then log-linearize the nonlinear system with
feedback control, disturbance, and noise to a linear bounded
input system. We then derive the error dynamics for the
angular velocity, ω, with different frame considerations for
the vehicle and reference systems.

A. Log-Linearization of Error Dynamics in the SE2(3) Lie
Group

Consider the dynamics of two systems, where Xb ∈ SE2(3)
is the state of the vehicle system in the vehicle body frame,
which is denoted by b, and X̄r ∈ SE2(3) is the state of the
reference trajectory in the reference frame, which is denoted
by r:

Ẋb = Xb(C + [νvb ]
∧) + ([νge ]

∧ − C)Xb (5)
˙̄Xr = X̄r(C + [ν̄vr ]

∧) + ([νge ]
∧ − C)X̄r (6)

where νvb , ν̄vr ∈ se2(3) are system inputs and may be
functions of time. The relationship between the vehicle and
reference input, νvb and ν̄vr , is νvb = ν̄vr + ν̃, where ν̃
represents the difference between two inputs, which includes
feedback control inputs, and disturbances. νge ∈ se2(3)
represents the gravity in the earth frame. Applying the chain
rule in the left-invariant error, η = X−1

b X̄r, the dynamics of
the left-invariant error can be written as:

η̇ = η(C + [ν̄vr ])− (C + [νvb ])η (7)

Based on our previous work [9], we denote the left-invariant
error η by η = exp [ζ]∧. Applying the derivative of the
exponential map [10], we can observe the error dynamics in
the se2(3) Lie algebra, as follows:

[ζ̇]∧ = ad[ζ]∧(C + [ν̄vr ]
∧) + [Uζ ν̃]

∧

Uζ ≡ −
ad[ζ]∧ exp (−ad[ζ]∧)

I − exp (−ad[ζ]∧)

(8)

where ζ =
[
ζp ζv ζR

]T
is the state of error dynamics in the

se2(3) Lie algebra, and Uζ is the matrix of nonlinear distortion
of inputs in the se2(3) Lie algebra for the left-invariant error
dynamics.

The adjoint function of ζ operating on C can be written as
a linear operator of C△ operating on ζ:

ad[ζ]∧C = −[C△ζ]∧ (9)

C△ =

03×3 I3 03×3

03×3 03×3 03×3

03×3 03×3 03×3

 (10)

and the adjoint linear operator of an se2(3) Lie algebra
element, ν̄vr , can be written as:

ad[ν̄vr ]
∧ =

 ω̄× 03×3 v̄×
03×3 ω̄× ā×
03×3 03×3 ω̄×

 (11)

We apply the Lie vee operator, [·]∨, an inverse of the Lie
wedge operator, to map the error dynamics from a Lie algebra
matrix representation to elements of the vector space R9, as
follows:

ζ̇ = −(ad[ν̄vr ]
∧ + C△)ζ + Uζ ν̃ (12)



Here, we want to control the angular velocity and accelera-
tion in the thrust, which correspond to the moment and force
for the multi-rotor; therefore, the system can be written as:

ζ̇ = −(ad[ν̄vr ]
∧ + C△)ζ +BuUζuζ +BdUζdν

Bu ≡
[
05×4

I4

]
Bd ≡

03×3 03×3

I3 03×3

03×3 I3

 (13)

where uζ and dν represent the feedback control input and
disturbance, respectively. The feedback control input uζ is
designed by dynamic inversion, and thus the error dynamics
in the Lie algebra can be written as:

ζ̇ = −(ad[ν̄vr ]
∧ + C△ +BuKζ)ζ +BdUζdν

uζ = U−1
ζ Kζζ

(14)

where Kζ is the control gain matrix for the state feedback
controller, which can be designed using a Linear Quadratic
Regulator (LQR) in the Lie algebra.

B. Error Dynamics of Angular Velocity

Consider the dynamics of the angular velocity of two
systems, where ωeb

b ∈ R3 represents the angular velocity of
the vehicle in the vehicle body frame. The angular velocity
is relative to the earth frame, which is denoted by eb. ω̄er

r

represents the angular velocity of the reference trajectory in
the reference frame.

We consider the error in the reference frame is ωbr
r = ω̄er

r −
Rrbωeb

b . The error dynamics can be written as:

ω̇br
r = ˙̄ωer

r −Rrbω̇eb
b + ωbr

r × ω̄er
r (15)

where Rrb is the rotational matrix for rotating the vector from
the vehicle body frame to the reference frame.

In our control design, we employ the dynamic inversion
approach similar to [15]; therefore, our control law is:

ω̇eb
b = Rbr( ˙̄ωer

r −Kωω
br
r − dα) (16)

where Kω is the control gain matrix and dα is the disturbance.
The actual control in the multi-rotor, which is the moment of
the motor in the vehicle body frame, is given by:

Mb =
e d

dt
Jbω

eb
b = Jω̇eb

b + ωeb
b × Jbω

eb
b (17)

where Jb is the inertia matrix of the vehicle in the vehicle
body frame. Substituting the designed control law to the actual
control, the moment in the body frame can be written as:

Mb = JbR
br( ˙̄ωer

r +Kωω
br
r − dα) + ωeb

b × Jbω
eb
b (18)

The error dynamics can be rewritten as:

ω̇br
r = −ω̄er

r × ωbr
r +Kωω

br
r + dα (19)

which is a linear system with bounded input.

IV. APPLICATION OF INVARIANT SET

Since the log-linear error dynamical system in (14) is a
linear system with bounded input, the invariant set can be
found efficiently employing LMIs. To find the invariant set
for the error bound of position, velocity, and rotation, we first
apply LMIs to the error dynamics of angular velocity in (19)
to find the error bound of the angular velocity, since the error
dynamics in (14) depends on the error of ω. We then use the
bound of the angular velocity as the bounded input for the error
dynamics in (14) and apply LMIs to find the invariant set for
the log-linear system. Once we have the invariant set for the
log-linear system in the se2(3) Lie algebra, we can compute
the invariant set for the actual nonlinear system, which is the
system in the SE2(3) Lie group, by applying the exponential
map. Our LMI guarantees boundedness of the invariant set of
the given system subject to bounded disturbance, but neglects
sensor noise and estimator dynamics.

We consider a multi-rotor flying along a reference trajectory,
which is generated by polynomial trajectory planning [15];
however, our algorithm is not limited to this case. The multi-
rotor model given in (1) can be embedded in the SE2(3) Lie
group, (2). As we mentioned above, we first compute the feed-
back control with LQR and a Lyapunov function of the error
dynamics of the angular velocity using an LMI in (19) with
a reference angular velocity [ω1, ω2, ω3] = [5, 5, 1] rad/s. We
then use the Lyapunov function to compute the error bound
of the angular velocity with a bounded external disturbance in
α, ||dα||∞ = 0.1 rad/s2. The result of the maximum tracking
error in the angular velocity is ||ω||∞ = 0.03162 rad/s.

The invariant set of the position error is computed with
[ax, ay, az] = [7.5, 7.5, 0] m/s2. For external disturbance
in translational acceleration, we consider two different mag-
nitudes. We assume the magnitude of bounded disturbance
inputs, ||a||∞, as 0.1 m/s2 and 1 m/s2. We use the LQR
method to find the feedback controller for the log-linearized
system in the se2(3) Lie algebra, and find the Lyapunov
function using the LMIs. The final result of the invariant sets
in the Lie algebra and the Lie group is shown in Fig. 1 and
Fig. 2, respectively. The figures show the invariant set with
zero initial states in the SE2(3) Lie group, and the invariant
set in the Lie group is constructed by applying the exponential
map from the set in the Lie algebra. The Lyapunov function
obtained in the LMI approach is an ellipsoid, which is the
shape of the invariant sets for the log-linearized system in the
se2(3) Lie algebra as shown on the left of Fig. 1.

Figure 3 shows a time history plot of the invariant set bound
computed by our approach, along with simulated trajectories
using our dynamic inversion controller and both sinusoidal
and square wave disturbances randomly sample. The left figure
in Fig. 3 shows the scenario under small disturbance, while the
right figure shows the scenario under large wind disturbance.
In both cases, the invariant sets calculated from the LMIs
successfully bound all simulated trajectories. The precision of
the invariant set shown in Fig. 3 can be improved by doing
an iterative process between our log-linearized system in (14)
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Fig. 1: Projected 2D Invariant Sets Comparison with Dynamic
Inversion, Left: Invariant Set in the Lie Algebra, Right: Invari-
ant Sets in the Lie Group, Top: Small Disturbance, Bottom:
Large Disturbance
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Fig. 2: Projected 3D Invariant Sets Comparison with Dynamic
Inversion, Left: Invariant Set in the Lie Algebra, Right: Invari-
ant Sets in the Lie Group, Top: Small Disturbance, Bottom:
Large Disturbance
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Fig. 3: The Bound of the Invariant Set with Simulated Trajec-
tories, Left: Small Disturbance, Right: Large Disturbance

and sub-system in (19). This is a useful result, since it can
be applied to safety verification of multi-rotors with a more
complicated reference trajectory.

V. CONCLUSION

In this paper, we presented an efficient method to compute
the invariant sets for the error dynamics of a multi-rotor
with the proposed log-linear dynamics inversion controller
with bounded disturbances. Our method was based on log-
linearization in the Lie group, which allowed us to exactly
log-linearize the nonlinear system. Additionally, we utilized
the Linear Matrix Inequalities (LMIs) for a linear system with
bounded inputs to bound the tracking error. Our simulation
demonstrated the application of our algorithm to a multi-rotor
with a reference trajectory and showed the usefulness of our
algorithm.

As future work, we intend to consider the sensor noise
and estimator dynamics in our multi-rotor model to have a
more precise computation, and apply our approach with flow
pipe creation with a more complicated reference trajectory in
order to illustrate a more realistic Urban Air Mobility (UAM)
scenario.
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