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Fig. 1: Our approach predicts 23 DoF trajectories based on raw point cloud and robot state (position and velocity) to grasp the object of interest. Some
examples of resulting grasps are shown in top right. An example of a generated trajectory is shown in the bottom part of the figure.

Abstract— Coordinating the motion of robots with high
degrees of freedom (DoF) to grasp objects gives rise to many
challenges. In this paper, we propose a novel imitation learning
approach to learn a policy that directly predicts 23 DoF
grasp trajectories from a partial point cloud provided by a
single, fixed camera. At the core of the approach is a second-
order geometric-based model of behavioral dynamics. This
Neural Geometric Fabric (NGF) policy predicts accelerations
directly in joint space. We show that our policy is capable of
generalizing to novel objects, and combine our policy with a
geometric fabric motion planner in a loop to generate stable
grasping trajectories. We evaluate our approach on a set of
three different objects, compare different policy structures, and
run ablation studies to understand the importance of different
object encodings for policy learning.

I. INTRODUCTION

Autonomous grasping with multi-fingered hands has the
potential to enable high throughput, generalized pick-place
operations across a wide range of objects. However, achiev-
ing high performance in this domain is difficult due to the
high-dimensional embodiments, sensory noise, partial ob-
servability, and large variation in object dynamics. Existing
strategies for computing grasping trajectories are typically
an outcome of a complex optimization on multiple levels
of the stack [1]–[15]. While optimization-based approaches
might lead to high grasp success rates, they suffer from
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being computationally expensive, especially in these high-
dimensional, continuous action spaces.

One way to overcome this limitation is the use of ge-
ometrically aware policy structures for control in high-
dimensional continuous spaces. Such approaches include
Dynamic Movement Primitives (DMPs) [16], Riemannian
Motion Policies (RMPs) [17], Geometric Dynamics Systems
(a stable subclass of RMPs) [18], Operational Space Control
(OSC) [19], and geometric fabrics [20]. Geometric fabrics
are nonlinear, second-order differential equations that are
provably stable and have been shown to outperform these
existing control methods in learning contexts [21]. While
fabrics have been used for grasping [21], [22], they have
not yet been shown to generalize to novel object geometries
from a single camera view. Xie et al. [21] leverage estimates
of object pose to train object-specific grasping policies that
mimic human demonstrations. Chen et al. [22] leverage a
manually derived geometric fabric to move the robot to a
single predicted grasp palm pose and hand configuration.

The main contribution of this paper is a model that reliably
predicts a smooth 23-DoF grasping trajectory directly in
joint space to grasp a previously unseen object given only a
single RGBD camera view, when the robot is placed in the
general vicinity (not a specific grasp target) of the object for
grasping. We create an NGF policy to learn this behavior,
building upon the prior success of NGFs [21]. An example
trajectory is shown in Fig. 1. Our results show that NGFs
produce smooth and stable behavior that generalizes over



object shape and pose variation. An off-the-shelf motion
planner drives the robot to the general vicinity of the object,
alleviating the burden of learning how to grasp from arbitrary
far away, initial robot configurations.

II. IMITATION LEARNING SETUP

We aim to learn policies that generate trajectories to grasp
objects of interest given the current state of the robot, an
object encoding o, and an initial robot placement in the
vicinity of the object. We train these policies via imitation
learning by first generating a dataset of successful grasping
trajectories in simulation using geometric fabrics [20] and
subsequently construct a surrogate expert as a function of the
data. This allows for on-policy imitation learning, DAgger
[23], to train our NGF policy.

A. Data Collection

Data collection consists of two primary steps: (1) finding
grasps and (2) generating robust grasping trajectories.

Finding in-contact grasps We place an object onto a table
and try to find a grasp that lifts the object successfully. To
do so, we use a dataset of grasps collected by [24]. After
filtering out the poses for reachability and collision, we move
the robot’s EE to the remaining poses, one by one, until a
successful grasp is found or all poses are exhausted. The
preshape hand configuration is fixed and a simple heuristic
is used to close the hand. If the grasp is successful, we store
it in a set of successful grasps. We repeat this process for
different objects and poses.

Next, we cluster the successful grasps based on EE pose
in the object frame and save only N grasp poses per object
(N = 7). We do this step hoping to have a low variance in
grasp distribution, which eases the learning process. Then,
we place the object across the grid on the table and try out
the N grasps one by one until we find a successful one,
which we store in the dataset Dg we use to generate training
trajectories. Here Dg = {(qg, o)i}i=|G|×|O|

i=1 where G is set
of poses on the grid, O is set of objects, qg is robot joint
position and o is object encoding.

Generating trajectories We initialize the scene in a
configuration (qg, o)i from the dataset and sample a target
pose x0 for the EE above the object in a prespecified region,
as shown in Fig. 2. This region is a design choice and any
other region could be used instead. Then, we use geometric
fabrics [20] as a motion planner to move the robot from the
grasp configuration qg to the target pose x0, resulting in a
trajectory ←−τi = [(qg, q̇g), ..., (q0, q̇0)]. Importantly, here we
add the object as an obstacle when computing a trajectory
to the target pose to ensure collision free trajectory. Finally,
we reverse the generated trajectory to store a trajectory that
moves into the grasp configuration, −→τi = reverse(←−τi ).
We generate M trajectories per object pose (M = 256).
We further encode the object’s partial view point cloud
z = Fθ(o) where Fθ is the encoder described in Section
III-D. This results in a dataset Dτ = {(−→τm, zi)}i=K,m=M

i=1,m=1

where |Dτ | = MK that we use for training our policies
using imitation learning.

Fig. 2: Region which we sample from above the object is computed
based on the object’s bounding box. Left: Training data is collected
by generating trajectories from the grasp configuration to the
sampled poses and then reversing those trajectories. Right: At
evaluation time, we sample a target pose above the object and use
a motion planner to get there. Then, the policy predicts a trajectory
to grasp the object.

B. Surrogate Expert and Training

With the above dataset Dτ , we now construct a surrogate
expert that can be efficiently queried on-the-fly, enabling
DAgger-style imitation learning. First, we select a randomly
sampled configuration, qdt , q̇

d
t , from trajectory −→τk at time

index t in our dataset. Then, the surrogate expert, πe(·),
uses a PD controller to compute an acceleration action to
steer towards the next configuration along the trajectory,
(qdt+1, q̇

d
t+1) ∈ −→τk . With a sufficient number of consecu-

tive executions, πe will produce motion that collapses onto
trajectory −→τk from the dataset. Formally, this expert is:

πe(q
d
t+1,qt, q̇t) = kp(q

d
t+1 − qt)− kdq̇t (1)

where qt and q̇t are the current joint position and velocity.
With this expert in place, we train policy πθ online to predict
desired accelerations following the optimization problem

θ∗ = argmin
θ

||πθ(qt, q̇t)− πe(qdt ,qt, q̇t)|| (2)

where ||·|| is L2 norm and this loss function is calculated over
a batch of evaluations before updating the policy parameters.
In practice, after sampling qdt , q̇

d
t , we add ϵ noise from a

narrow uniform distribution to obtain qt, q̇t. We then identify
the trajectory −→τg ∈ Dτ that has the closest configuration
qdi , q̇

d
i (i is some time index) to qt, q̇t. The expert πe then

targets subsequent configurations in this identified trajectory
−→τg for the remainder of the rollout of the policy.

III. NEURAL POLICY ARCHITECTURES

In this section, we provide a short introduction to ge-
ometric fabrics [20] and describe our instantiated NGF
policy. We additionally cover the baseline policy, discuss
object encodings, numerical integrators for our policies, and
connect our policies with off-the-shelf motion planners.

A. Geometric Fabrics

Geometric fabrics are a specific class of autonomous,
second-order differential equations that are provably stable
(i.e., they are guaranteed to come to rest at a local minimum)
and exhibit path consistency in the motion they generate
due to their geometric nature. They consist of three major



components: 1) an energized geometry, 2) a driving force
that derives from a scalar potential function, and 3) damping.
Geometric fabrics are dependent on joint position q, joint
velocity q̇, and an additional feature vector z, that together
form the following system,

q̈ =h̃(q, q̇, z) + αLq̇−M−1(q, ˆ̇q, z)∂qψ(q, z)

−B(q, q̇, z)q̇− βq̇, (3)

where h̃ is a nonlinear geometry (homogeneous of degree
2 in velocity), αL is an energization coefficient calculated
to conserve some particular energy, M−1∂qψ creates the
driving force and dictates the local minima of the fabric, B
is a postive semi-definite damping matrix, .̂ denotes a unit
vector, and β ∈ R+ is an additional damping scalar. Full
description of these components are outside the scope of this
paper and we refer the reader to [25] for in-depth discussion
on generalized nonlinear geometries and [20] for geometric
fabrics and relevant tools like the energization operator.

B. Neural Geometric Fabric

We instantiate a Neural Geometric Fabric by parame-
terizing the various components of a geometric fabric via
neural networks and object encoding as the feature vector
z. For the following, Fθ(·) is a neural network consisting
of three fully connected, feedforward layers with 512 units
each and with hidden layer ELU activations, θ trainable
parameters, and 1000 Random Fourier Features (RFFs) over
its inputs. Every usage of Fθ(·) below is meant as a different
neural network instance. For some outputs like the damping
coefficient below, the final output layer is also passed through
ELU activations to force positive outputs. Otherwise, the
final layer is linear.

The geometric portion of the fabric is produced by the
metric, Mg = UgU

T
g , with Ug = Fg(q, ˆ̇q, z), a lower trian-

gular matrix with positive diagonal elements. The geometric
acceleration results from πg = q̇T q̇ FX (q, ˆ̇q, z). The final
geometric force is then fg = Mgπg .

The driving force of the fabric is produced by the metric,
Mf = UfU

T
f , with Uf = Ff (q, z), a lower triangular

matrix with positive diagonal elements. The associated scalar
potential force results from taking the gradient ∂qψ of scalar
function ψ = Fψ(q, z). This force is coupled with a learned
positive damping scalar, βf = Fβ(q, q̇, z). The final driving
force is then ff = ∂qψ + βf q̇.

The metrics and forces are summed to produce

(Mg +Mf )q̈+ fg + ff = 0, (4)

which can be resolved as

q̈ = h̃−M−1∂qψ −Bq̇ (5)

where M = Mg +Mf , h̃ = −M−1fg , and B = βfM
−1q̇.

We calculate an energization coefficient, αL, using the en-
ergy L = 1

2 q̇
T q̇ and geometric acceleration q̈ = h̃, and

add this additional acceleration as αLq̇. Finally, we add an
additional positive scalar damping with β = 5 resulting in the
final fabric form in (3). Practically, this additional damping
helped stabilize training.

Fig. 3: Example point cloud reconstruction; input in blue, output
in red. While imperfect (left), it preserves information about object
pose and course geometry (right).

C. Acceleration MLP

We implement an MLP-based acceleration policy as a
baseline. Input and output of the policy is the same as for
NGF, i.e. input joint position, velocity, and object encoding
and output joint acceleration. The input layer is followed by
two hidden layers before the output layer. The first hidden
layer has a dimensionality of 64, while the second one has
256. The ReLU activation function is used after each layer.

D. Object encoding

We aim to generate grasp trajectories that generalize across
poses and object shapes directly from a point cloud. Thus,
we need to encode the object’s shape and pose. We do
so by training an autoencoder on a reconstruction task for
pointclouds stored in robot base frame and then use only the
encoder from the autoencoder to generate an object encoding.
After training on the reconstruction task, the encoder is
not further modified, i.e., the weights are frozen. The loss
function for the reconstruction task is a weighted sum of
Chamfer distance and L2 regularization on the latent space.
The data for the reconstruction task is generated by placing
an object at 9k different poses across the table and saving
the point cloud obtained from the fixed camera. We repeat
this process for 4 YCB [26] objects, producing in total 36k
samples. The encoder is based on PointNet layers [27] from
PyTorch Geometric library [28] while the decoder is a 3 layer
MLP. An example of a reconstructed point cloud can be seen
in Fig. 3. While imperfect, we show in our experiments that
it is sufficiently good for generating grasp trajectories.

E. Acceleration Integrator

Both the learned policies and the surrogate expert de-
scribed in Sec. II-B produce accelerations. We integrate
these accelerations forward in time via the approximate
RK2 integration scheme as described in [29]. The exact
formulation calculates the next joint position and velocity,
qt+1 and q̇t+1, from the current joint position and velocity,
qt and q̇t, acceleration q̈t, and timestep ∆t as

qt+1 = qt +∆tq̇t +
1

2
∆t2q̈t (6)

q̇t+1 = q̇t +∆tq̈t (7)

The policies perform control at 30 Hz and therefore ∆t = 1
30 .



F. Motion Planner In The Loop

A further shortcoming of the previous work [21] is a
necessity to always start from a precise initial configuration.
While the ability to learn longer trajectories showcases the
model’s capabilities, we believe one should use existing
(traditional) tools when a solution is well known and use
learning models only when necessary. To underline this, we
leverage an existing off-the-shelf motion planner to move
close to the object and lift it after the grasping is completed.
The learned model learns only the complex component -
grasping the object.

When deploying our model, we sample a pose above the
object (Fig. 2) in the same way as we do when generating the
trajectories during training. Then, instead of solving for IK,
we look for the closest target configuration in the training
dataset. To find such a configuration, we find an encoding
in the dataset that is closest (L2) to the encoding of the
current object we want to grasp. Then, we search across
trajectories associated with that encoding and find the one
whose EE pose starts closest to the queried pose above
the object. We set the corresponding configuration as the
target configuration for the motion planner. We found that
if we would naively solve IK instead, the deployed policy
wouldn’t perform as well due to the out-of-distribution robot
configurations. We plan on learning this as a separate model
for future work since this querying can be expensive if the
whole dataset can’t fit onto a GPU.

IV. EXPERIMENTS

We place an object at a random position on the table and
simply fit a spline as a motion planner to get from a fixed
initial configuration close to the object. After that, we execute
a grasping policy to grasp the object. Finally, we use a motion
planner [20] to lift the object. If the robot holds the object
after executing the lifting trajectory, we label the attempt as
a successful grasp. We repeat this 100 times per object. Our
experimental setup is shown in Fig. 4.

We evaluate our approach across 3 different objects. The
grasp policies have been trained on grasp trajectories for 2
(bleach, sugarbox) out of the 3 objects. Results are shown
in Fig. 5 with discussions below. We note that when we ran
the trajectories from the dataset in the simulator, only 59%
of trajectories successfully picked up ‘sugarbox‘ while that
number is 93% for ‘bleach.‘ We think it is important to keep
these numbers in mind when reading the results in Fig. 5.
Effect of Policy Structure: When presented with the same
object encoding, NGF always outperforms MLP policy
across all objects. Most importantly, when a model is pre-
sented with an encoded pointcloud, NGF outperforms MLP.
Object Representation: We investigate the impact of object
encoding on policy performance across two cases: 1) passing
the position (-POS) of the object to the policy, and 2) passing
the latent point cloud encoding (-PCD) to the policy. Overall,
NGF performance with object position is fairly competitive
to the MLP baseline. However, the PCD encoding does
improve the NGF policy performance over the position
only input. These results reveal that the latent encoder for

Fig. 4: Top: The red lines show the camera location and workspace
boundaries. The objects are (left to right): ‘mustard’, ‘sugarbox’,
‘bleach’. Bottom: Our manipulation pipeline from left to right: a
motion planner moves the robot close to the object, our policy
grasps the object, and then a motion planner lifts the object.
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Fig. 5: Grasp success rates for different grasp-trajectory predicting
models and the dataset we use for training. Not all samples in the
dataset are successful grasps. Input modalities: POS-position only,
PCD - pointcloud.

the partial view point cloud produces useful features for
grasping operations that meet or exceed position-only policy
performance. The main reason for this difference is that the
point cloud contains information about the geometry of the
object while the position only input does not. This additional
information is useful for informing grasp behavior. Overall,
this result is encouraging and suggests that effective high-
DoF, high-frequency policies can be trained that leverage
camera views, which contain only partial information about
the scene. This capability will enable policies to be imme-
diately more useful for real-world deployment.

V. CONCLUSION

We show how to train an NGF policy without any human
demonstrations and how to use the policy in a loop with an
off-the-shelf motion planner. Our policy generates 23 DoF
grasp trajectories that generalize across previously unseen
objects directly from a partial view point cloud.
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configurations with specified contact regions,” Intl. Journal of Robotics
Research, vol. 30, no. 4, 2011.

[6] Y. Zheng and W.-H. Qian, “Coping with the grasping uncertainties
in force-closure analysis,” Intl. Journal of Robotics Research, vol. 24,
no. 4, 2005.

[7] K. Hang, M. Li, J. A. Stork, Y. Bekiroglu, F. T. Pokorny, A. Billard,
and D. Kragic, “Hierarchical fingertip space: A unified framework
for grasp planning and in-hand grasp adaptation,” IEEE Trans. on
Robotics, vol. 32, no. 4, 2016.

[8] M. S. Siddiqui, C. Coppola, G. Solak, and L. Jamone, “Grasp stability
prediction for a dexterous robotic hand combining depth vision and
haptic bayesian exploration,” Frontiers in Robotics and AI, 2021.

[9] Q. Lu, K. Chenna, B. Sundaralingam, and T. Hermans, “Planning
Multi-Fingered Grasps as Probabilistic Inference in a Learned Deep
Network,” in Intl. Symposium on Robotics Research, 2017.

[10] Q. Lu and T. Hermans, “Modeling Grasp Type Improves Learning-
Based Grasp Planning,” IEEE Robotics and Automation Letters, 2019.

[11] Q. Lu, M. V. der Merwe, B. Sundaralingam, and T. Hermans, “Multi-
fingered grasp planning via inference in deep neural networks,” IEEE
Robotics & Automation Magazine, 2020.

[12] Q. Lu, M. V. der Merwe, and T. Hermans, “Multi-Fingered Active
Grasp Learning,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems, 2020.

[13] M. Van der Merwe, Q. Lu, B. Sundaralingam, M. Matak, and T. Her-
mans, “Learning Continuous 3D Reconstructions for Geometrically
Aware Grasping,” in IEEE Intl. Conf. on Robotics and Automation,
2020.

[14] M. Matak and T. Hermans, “Planning visual-tactile precision grasps
via complementary use of vision and touch,” IEEE Robotics and
Automation Letters, vol. 8, no. 2, pp. 768–775, 2023.

[15] A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational
grasp generation for object manipulation,” in Intl. Conf. on Computer
Vision, 2019.

[16] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[17] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, “Rie-
mannian motion policies,” arXiv preprint arXiv:1801.02854, 2018.

[18] C.-A. Cheng, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots,
and N. Ratliff, “Rmp flow: A computational graph for automatic mo-
tion policy generation,” in Algorithmic Foundations of Robotics XIII:
Proceedings of the 13th Workshop on the Algorithmic Foundations of
Robotics 13. Springer, 2020, pp. 441–457.

[19] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[20] K. Van Wyk, M. Xie, A. Li, M. A. Rana, B. Babich, B. Peele, Q. Wan,
I. Akinola, B. Sundaralingam, D. Fox, B. Boots, and N. D. Ratliff,
“Geometric fabrics: Generalizing classical mechanics to capture the
physics of behavior,” IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 3202–3209, 2022.

[21] M. Xie, A. Handa, S. Tyree, D. Fox, H. Ravichandar, N. D.
Ratliff, and K. V. Wyk, “Neural geometric fabrics: Efficiently
learning high-dimensional policies from demonstration,” in 6th
Annual Conference on Robot Learning, 2022. [Online]. Available:
https://openreview.net/forum?id=GTyBkq36tjx

[22] Q. Chen, K. V. Wyk, Y.-W. Chao, W. Yang, A. Mousavian,
A. Gupta, and D. Fox, “Learning robust real-world dexterous
grasping policies via implicit shape augmentation,” in 6th
Annual Conference on Robot Learning, 2022. [Online]. Available:
https://openreview.net/forum?id=bUUf1CT1sNu

[23] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” in
Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, ser. Proceedings of Machine Learning
Research, G. Gordon, D. Dunson, and M. Dudı́k, Eds., vol. 15.
Fort Lauderdale, FL, USA: PMLR, 11–13 Apr 2011, pp. 627–635.
[Online]. Available: https://proceedings.mlr.press/v15/ross11a.html

[24] D. Turpin, T. Zhong, S. Zhang, G. Zhu, E. Heiden, M. Macklin,
S. Tsogkas, S. Dickinson, and A. Garg, “Dexgrasp-1m: Dexterous
multi-finger grasp generation through differentiable simulation,” in
IEEE Intl. Conf. on Robotics and Automation, 2023.

[25] N. D. Ratliff, K. Van Wyk, M. Xie, A. Li, and M. A. Rana,
“Generalized nonlinear and finsler geometry for robotics,” in 2021
IEEE International Conference on Robotics and Automation (ICRA),
2021, pp. 10 206–10 212.

[26] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks
for manipulation research,” in 2015 International Conference on
Advanced Robotics (ICAR), 2015, pp. 510–517.

[27] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “Pointnet:
Deep learning on point sets for 3d classification and segmentation,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 77–85.

[28] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[29] N. Gruver, M. Finzi, S. Stanton, and A. G. Wilson, “Deconstructing
the inductive biases of hamiltonian neural networks,” arXiv preprint
arXiv:2202.04836, 2022.


