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Abstract— In this work, our objective is to investigate the
potential of employing diffusion models for point cloud-based
6 DoF grasp pose generation. Recently, diffusion models have
demonstrated remarkable success as generative models for
images, surpassing earlier models such as Variational Auto-
Encoders and Generative Adversarial Networks. Unlike their
predecessors, diffusion models do not directly generate samples
from the learned model. Instead, they determine the energy or
score of the data distribution, and during inference, utilize it
in an inverse diffusion process.

In the field of robotics, generative models have been espe-
cially common for grasp pose selection. Due to the inherent
complexity of devising grasp poses for a wide range of objects,
it is common to develop 6 DoF grasp pose generators using
data-driven approaches. However, unlike images that typically
exist in Euclidean space, grasp poses reside in the Lie group
SE(3), necessitating modifications in the generative models to
accommodate to this space.

In our research, we modified diffusion models to facilitate
learning generative models within the Lie group SE(3). As SE(3)
is not a Euclidean space, we implemented several adjustments
to both the training and sampling algorithms to accurately gen-
erate samples in SE(3). Subsequently, we trained a point cloud-
dependent 6 DoF grasp generative model. Our findings revealed
that SE(3) diffusion models surpassed previous methods for
6 DoF grasp generation in terms of successful grasping and
distribution coverage. Videos, code, and additional details are
available at: https://sites.google.com/view/se3dif

I. INTRODUCTION

Grasp selection is a crucial problem in robotic manipu-
lation. When presented with an arbitrary object, the task
is to choose a 6 DoF pose (3D position + orientation)
that enables successful gripping of the object. Proper grasp
selection requires consideration of factors such as the object’s
geometry, gripper’s geometry, and object’s mass distribution.
Classical approaches to grasp selection relied on geometric-
based heuristic methods to select grasp points on objects.
However, these models are heavily dependent on the object’s
mesh, limiting their applicability to realistic scenarios where
only camera observations might be available.

Data-driven models have gained popularity for handling
unstructured scenarios. Using a dataset of suitable grasp
poses for a diverse set of objects, a generative model learns
the underlying data distribution. Then, given an observation
(usually a point cloud) of the scene or the object to be
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grasped, the learned model can generate a set of candidate
grasp poses. The community has explored various methods
for 6-DoF grasp generation. In [1]–[3], an array of grasps
is generated through heuristics, and a learned classifier
evaluates the quality of these generated grasps, selecting
the satisfactory ones. In [4], a two-step generative model is
proposed: a Variational Autoencoders (VAE) generates grasp
pose candidates, which are then refined by a trained classi-
fier. Nevertheless, learning the classifier remains crucial, as
current generative models struggle to generate accurate grasp
poses.

Our work is inspired by recent advances in generative
modeling. Diffusion models [5]–[9] have achieved remark-
able results in text-to-image generation and surpassed pre-
vious generative models, such as Generative Adversarial
Networks (GAN) [10] or VAE [11], in terms of image qual-
ity. Contrary to prior methods that learn explicit sampling
models, diffusion models aim to learn a vector field corre-
sponding to the score function of a noisy data distribution.
Samples are then generated through a diffusion process based
on the learned vector field. We hypothesize that similar
improvements in quality observed for images can be achieved
for 6 DoF grasp pose generation. Additionally, due to their
implicit nature, diffusion models can be incorporated into
robotics in innovative ways. While VAE or GAN have been
primarily used for direct sampling, diffusion models can also
serve as cost functions and be integrated into multi-objective
problems, such as motion optimization problems.

This work has two primary contributions. First, we inves-
tigate the application of diffusion models for non-Euclidean
spaces, such as SE(3). Unlike images, which are usually
represented in Euclidean space, grasp poses reside in the
Lie group SE(3). This necessitates several modifications
to both the training and sampling algorithms. Second, we
demonstrate how to learn diffusion models for 6DoF grasping
by leveraging widely annotated open-source 6DoF grasp
pose datasets like Acronym [12]. SE(3) diffusion models
enable the transformation of initially random samples into
low-cost regions (regions with suitable grasping poses on
objects) through an inverse diffusion process [13] (cf. Fig. 1).
SE(3) diffusion models offer two benefits: First, they better
represent and cover multimodal distributions, such as those
in 6DoF grasp generation scenarios, leading to wider variety
of grasp poses. Second, due to their implicit nature, they can
be exploited as costs or cost gradients in motion optimization
problems in contrast with other generative models.

https://sites.google.com/view/se3dif


Fig. 1: Generating high quality SE(3) grasp poses by iteratively refining random initial samples (k=L) with an inverse Langevin diffusion process over
SE(3) elements (Eq. (6)).

II. PRELIMINARIES

Diffusion Models. Unlike common deep generative mod-
els (VAE, GAN) that explicitly generate a sample from a
noise signal, Diffusion models learn to generate samples by
iteratively moving noisy random samples towards a learned
distribution [5], [14]. A common approach to train diffusion
models is by Denoising Score Matching (DSM) [15], [16]. To
apply DSM [14], [17], we first perturb the data distribution
ρD(x) with Gaussian noise on L noise scales N (0, σkI) with
σ1 < σ2 < · · · < σL, to obtain a noise perturbed distribution
qσk

(x̂) =

∫
x

N (x̂|x, σkI)ρD(x)dx. To sample from the per-
turbed distribution, qσk

(x̂) we first sample from the data
distribution x ∼ ρD(x) and then add white noise x̂ = x+ ϵ

with ϵ ∼ N (0, σkI). Next, we estimate the score function of
each noise perturbed distribution ∇x log qσk

(x) by training a
noise-conditioned vector field sθ(x, k), by score matching
sθ(x, k) ≈ ∇x log qσk

(x) for all k = 1, . . . , L. The training
objective of DSM [16] is

Ldsm =
1

L

L∑
k=0

Ex,x̂

[∥∥sθ(x̂, k)−∇x̂ logN (x̂|x, σ2
kI)

∥∥2
2

]
, (1)

with x ∼ ρD(x) and x̂ ∼ N (x, σkI). To generate samples
from the trained model, we apply Annealed Langevin
Markov Chain Monte Carlo (MCMC) [18]. We first draw
an initial set of samples from a distribution xL ∼ ρL(x) and
then, simulate an inverse Langevin diffusion process for L

steps, from k = L to k = 1

xk−1 = xk +
α2
k

2
sθ(xk, k) + αkϵ , ϵ ∼ N (0, I), (2)

with αk > 0 a step dependent coefficient. Overall, DSM
Eq. (1) learns vector fields that point towards the samples
of the training dataset ρD(x) [13].

SE(3) Lie group. The SE(3) Lie group is prevalent in
robotics. A point H =

[
R t
0 1

]
∈ SE(3) represents the full

pose (position and orientation) of an object or robot link with
R ∈ SO(3) the rotation matrix and t ∈ R3 the 3D position. A
Lie group encompasses the concepts of group and smooth
manifold in a unique body. Lie groups are smooth manifolds
whose elements have to fulfil certain constraints. Moving
along the constrained manifold is achieved by selecting any
velocity withing the space tangent to the manifold at H

(i.e., the so-called tangent space). The tangent space at the
identity is called Lie algebra and noted se(3). The Lie algebra
has a non-trivial structure, but is isomorphic to the vector
space R6 in which we can apply linear algebra. As in [19],
we work in the vector space R6 instead of the Lie algebra

se(3). We can move the elements between the Lie group
and the vector space with the logarithmic and exponential
maps, Logmap : SE(3) −→ R6 and Expmap : R6 −→ SE(3) respec-
tively [19]. A Gaussian distribution on Lie groups can be
defined as

q(H|Hµ,Σ) ∝ exp
(
−0.5

∥∥Logmap(H−1µ H)
∥∥2
Σ−1

)
, (3)

with Hµ ∈ SE(3) the mean and Σ ∈ R6×6 the covariance
matrix [20]. This special form is required as the distance
between two Lie group elements is not represented in
Euclidean space. Following the notation of [19], given a
function f : SE(3) −→ R, the derivative w.r.t. a SE(3) element,
Df(H)/DH ∈ R6 is a vector of dimension 6. We refer
the reader to [19] and the Appendix in project site for an
extended presentation of the SE(3) Lie group.

III. SE(3) DIFFUSION MODELS
In this section, we show how to adapt diffusion models

to the Lie group SE(3) [19], as it is a crucial space for
robot manipulation. The SE(3) space is not Euclidean, hence,
multiple design choices need to be considered for adapting
Euclidean diffusion models. In the following, we explain the
required modifications and show how they can be applied in
practise.

A. From Euclidean diffusion to diffusion in SE(3)

A Diffusion Model in SE(3), is a vector field that outputs
a 6 dimensional vector v ∈ R6 for an arbitrary query
point H ∈ SE(3), i.e., v = sθ(H, k) with a scalar conditioning
variable k determining the current noise scale [14].
Denoising Score Matching in SE(3). Similar to the Eu-
clidean space version (cf. Sec. II), DSM is applied in two
phases. We first generate a perturbed data point in SE(3),
i.e., sample from the Gaussian on Lie groups Eq. (3),
Ĥ ∼ q(Ĥ|H, σkI) with mean H ∈ ρD(H) and standard de-
viation σk for noise scale k. Practically, we sample from this
distribution using a white noise vector ϵ ∈ R6,

Ĥ = HExpmap(ϵ) , ϵ ∼ N (0, σ2
kI). (4)

Following the idea of DSM, the model is trained to match the
score of the perturbed training data distribution. Thus, DSM
in SE(3) requires computing the derivatives of the perturbed
distribution w.r.t. a Lie group element. Hence, the new DSM
loss function on Lie groups equates to

Ldsm =
1

L

L∑
k=0

EH,Ĥ

∥∥∥∥∥sθ(Ĥ, k)− D log q(Ĥ|H, σkI)

DĤ

∥∥∥∥∥
2

2

,
(5)

https://sites.google.com/view/se3dif


Fig. 2: Left: The success of the generated grasp poses is evaluated in Isaac Gym. Right: Success Rate and EMD evaluation.

with H ∼ ρD(H) and Ĥ ∼ q(Ĥ|H, σkI). Note that, as in-
troduced in Sec. II, the derivatives w.r.t. a SE(3) element
Ĥ outputs a vector on R6. In practice, we compute this
derivative by automatic differentiation using Theseus [21]
library along with PyTorch. We present in Algorithm 1 the
training pipeline.

Algorithm 1: SE(3) Diffusion Model Training
Given: θ0: initial params for sθ;
Datasets: Dm

g : {H} succesful grasp poses for object m;

1 for s← 0 to S − 1 do
2 k, σk ← [0, . . . , L]; // sample noise scale

3 H ∼ Dm
g ; // Sample success grasp poses for obj. m

4 ϵ ∼ N (0, σkI); // sample white noise on k scale

5 Ĥ = HExpmap(ϵ); // perturb grasp pose Eq. (4)

6 vT = get grad(log q(Ĥ|H, σkI)); // Compute grad with Theseus

7 v = sθ(Ĥ, k); // compute vector

8 Ldsm = MSE(v,vT ); // Compute dsm loss Eq. (5)

9 Parameter update
10 θs+1 = ADAM(θs, α, Ldsm); // Update parameters

11 return θ∗;

Sampling with Langevin MCMC in SE(3). Evolving
the inverse Langevin diffusion process for SE(3) elements
(cf. Fig. 1 for visualization) requires adapting the previously
presented Euclidean Langevin MCMC approach Eq. (2). In
particular, we have to ensure staying on the SE(3) manifold
throughout the inverse diffusion process. Thus, we adapt the
inverse diffusion to SE(3) as

Hk−1 = HkExpmap
(
−α2

k

2
sθ(Hk, k) + αkϵ

)
, (6)

with ϵ ∈ R6 sampled from ϵ ∼ N (0, I) and the step depen-
dent coefficient αk > 0. By iteratively applying Eq. (6),
we move a set of randomly sampled SE(3) poses to the
low energy regions of Eθ, i.e. good grasp pose regions (See
Fig. 1). We present the sampling pipeline in Algorithm 2.

Algorithm 2: SE(3) Diffusion Model Sampling
Given: sθ: trained model, {σk}Lk noise scales, β scale, T

steps time;

1 HL ∼ q(I, σLI)
2 for k ← L to 0 do
3 αk = βσk/σ0

4 for t← 0 to T do
5 ϵ ∼ N (0, σkI)

6 Hk−1 = HkExpmap
(
−α2

k
2
sθ(Hk, k) + αkϵ

)
7 return H0;

IV. EXPERIMENTAL EVALUATION

In the following, we evaluate SE(3) Diffusion Models as
a 6 DoF grasp pose generative model. First, we train a
SE(3) Diffusion Model using the Acronym dataset [12]. The
dataset contains successful 6 DoF grasp poses for a variety
of objects from ShapeNet [22]. We focus on the collection of
successful grasp poses for 90 different mugs (approximately
90K 6DoF grasp poses). The model is trained conditioned
on the object’s point cloud. In our experiment, we obtain the
point cloud directly from the meshes from Shapenet.

We evaluate grasp poses generated with our trained model
in terms of the success rate, and the Earth Mover Distance
(EMD) between the generated grasps and the training data
distribution. We consider 90 different mugs and evaluate 200
generated grasps per mug. We evaluate the grasp success
on Nvidia Isaac Gym [23] (Fig. 2). The EMD measures
the divergence between two empirical probability distribu-
tions [24], providing a metric on how similar the generated
samples are to the training dataset. We evaluate the perfor-
mance of our model with respect to 6 DoF-GraspNet [4].

We present the results in Fig. 2. We name our method
PoiNt-SE(3)-DiF. In terms of success rate, our model out-
performs 6 DoF GraspNet slightly (especially yielding lower
variance). We highlight that in contrast with 6 DoF GraspNet,
our model considers a single network, while 6 DoF GraspNet
requires both a generator and a classifier. Considering grasp
diversity, i.e., EMD metric (lower is better), our model
outperforms the baseline significantly. A reason for the
difference, might be that 6 DoF-GraspNet tend to overfit to
specific overrepresented modes of the data distribution. In
contrast, our model’s samples capture the data distribution
more properly. We, therefore, conclude that our method
is indeed generating high-quality and diverse grasp poses.
We add an extended presentation of the experiment in the
Appendix in our project site.

V. CONCLUSION

We proposed Diffusion Models in SE(3) for learning data-
driven generative models for 6 DoF grasp poses. We have
shown that our model outperformed in terms both success
rate and data distribution covering to previous state-of-the-art
methods. Given their inherent implicit behavior, in the future,
we want to explore diffusion models for reactive motion
control, exploiting them for gradient-based MPC. Also, we
would like to explore learnin SE(3) Diffusion Models that
could adapt to multiple conditioning inputs such as language
and also apply them to represent target pose distributions of
arbitrary objects.
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