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Abstract—Many problems in robotics are fundamentally prob-
lems of geometry, which lead to an increased research effort in
geometric methods for robotics in recent years. The results were
algorithms using the various frameworks of screw theory, Lie
algebra and dual quaternions. A unification and generalization
of these popular formalisms can be found in geometric algebra.
The aim of this paper is to showcase the capabilities of geometric
algebra when applied to robot manipulation tasks. In particular
the modelling of cost functions for optimal control can be done
uniformly across different geometric primitives leading to a low
symbolic complexity of the resulting expressions and a geometric
intuitiveness. We demonstrate the usefulness, simplicity and com-
putational efficiency of geometric algebra in several experiments
using a Franka Emika robot. The presented algorithms were
implemented in c++20 and resulted in the publicly available
library gafro. The benchmark shows faster computation of the
kinematics than state-of-the-art robotics libraries.

I. INTRODUCTION

Robot manipulators are used within an increased diversity
of environments and tasks, which leads to a large increase in
not only the complexity of the surroundings but also in the
systems, that need to be able to adapt to different situations.
To ensure safe and efficient interaction the corresponding algo-
rithms need to be fast and be based on accurate models of the
environment, which makes it important to think carefully about
the representations that are used. Many robotics problems are
fundamentally problems of geometry, which is why a lot of
recent research is focusing on representing and utilizing these
geometric properties for solving a wide variety of problems
more efficiently. Screw theory, Riemannian geometry, Lie
algebra and dual quaternions are just a few examples of the dif-
ferent methods that have been proposed to be used in robotics.
Traditionally the kinematics and dynamics of the robots are
expressed in different algebras, including linear algebra, vector
calculus and quaternion algebra. While quaternions offer a way
to avoid the singularities caused by Euler angles, they do not
contain position information and thus conversion operations
between algebras are required. To address this limitation, dual
quaternions were proposed to extend quaternions by a dual
unit, resulting in a translation and rotation. We propose in this
paper to use geometric algebra instead, which can be seen as
a further unification and generalization of these concepts. In
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particular conformal geometric algebra is a direct extension of
dual quaternions [1].

Geometric Algebra (GA) can be seen as a high-level math-
ematical language for geometry that unifies several known
concepts, which makes it a very effective tool when the physics
of a system need to be modeled. The roots of geometric
algebra can be found in Clifford algebra, which was a uni-
fication of quaternions and Grassmann algebra [2]. The result
was the geometric product, which is the sum of an inner
and an outer product. This unfamiliar concept actually leads
to algebraic tools that allow for the simplification of many
otherwise complex equations, making them more intuitive to
handle. A well-known example for this simplification are the
Maxwell equations, which reduce to only a single equation in
geometric algebra (V + %%) F =J [3].

GA is based on a multiplication operation called the ge-
ometric product, composed of an inner product and an outer
product. The latter describes an oriented plane/volume that ex-
tends and generalizes the cross product that is restricted to only
3 dimensions. The resulting elements are called multivectors.
This representation can be used to encode geometric primitives
in a uniform manner, such as points, lines, planes, spheres, or
quadric surfaces such as ellipsoids, as well as the associated
transformations u to move from an initial state x( to a desired
state x4, which are called motors. In robotics, these operations
allow translations and rotations to be treated in the same way,
without requiring us to switch between different algebras, as
is classically done when handling position data in a Cartesian
space and orientation data as quaternions. Practically, GA
allows geometric operations to be computed in a very fast
way, with compact codes.

The representational advantage of geometric algebra is the
geometric significance of its elements, meaning that an object
can directly represent geometric primitives, such as lines,
spheres and planes, as well as orthogonal transformations,
such as rotations, translations, scaling and projections. This
allows the direct extraction of geometric information about
the problem from the equations. Furthermore, its elements,
called multivectors, avoid the parameter redundancy of other
representations such as matrices, leading to less memory
consumption and optimized computation compared to analytic
geometry or vector calculus, which makes it an amenable
framework for real-time applications. In engineering the valid-
ity of equations is usually determined by a dimensional check
of the quantities of the formula. These quantities are of a



certain algebraic order when using geometric algebra, which
adds a structural check for the validity. These properties were
some fundamental criteria in the design of geometric algebra,
along with the possibility to formulate basic equations in a
coordinate-free manner and to smoothly transfer information
between formalisms [4].

Apart from our theoretical contributions we also provide
an open-source library that implements all the presented for-
mulations and algorithms. To this end, we have implemented
the geometric algebra from scratch using expression templates.
There have been various works that published implementations
of geometric algebra such as GATL [5], GARAMON [6],
Gaigen [7], TbGAL [8], GAL [9], Gaalet [10] and Versor [11].
These libraries all have in common that they are meant to be
generic geometric algebra implementations focusing on the
computational and mathematical aspects of the algebra itself.
In contrast to that, our implementation is targeted specifically
at robotics applications and thus not only implements the low-
level algebraic computations but also features the computation
of the kinematics and dynamics of serial manipulators as well
as generic cost functions for optimal control. We therefore
have a similar objective as the DQ robotics [12] library,
but using the more general conformal geometric algebra as
opposed to dual quaternions.

II. METHOD

In this section, we are presenting the mathematical tools that
we have previously used in general optimization problems. The
presented algorithms are implemented in c++20 in the publicly
available library gafro
https://github.com/idiap/gafro/.

We use the following notation throughout the paper: x
to denote scalars, x for vectors, X for matrices, X for
multivectors and X for matrices of multivectors.

A. Geometric Algebra

Geometric algebra is a unified algebra for geometric rea-
soning, alleviating the need of utilizing multiple algebras to
express geometric relations [13]. The core idea of geometric
algebra is its multiplication operation called the geometric
product

ab=a-b+anb, @))

which is the sum of an inner - and an outer A product [14]. The
resulting algebra essentially includes R and the subspaces of
the associated vector space as elements of computations [15].
A general element in geometric algebra is called a multivector
and is the linear combination of basis blades. We are using a
specific variant known as conformal geometric algebra (CGA)
[16]. It embeds the 3-dimensional Euclidean space R? into the
5-dimensional space R*!, with the corresponding geometric
algebra G4 ;. In CGA every multivector consists of 32 basis
blades given in grades from O to 5. This high dimension
looks to be leading to an increased complexity, in practice,
however, these multivectors usually are very sparse, a fact that
we exploit in our implementation.

Points are the basic geometric primitives that can be used to
construct more complex primitives such as lines, circles and
planes by the spanning operation of the outer product. These
geometric primitives are in general nullspace representations
with respect to either the inner (IPNS) or the outer (OPNS)
product, meaning that a geometric primitive is defined by the
set of all Euclidean points that result in zero upon multipli-
cation when embedded in CGA. In Figure 1, we show the
subspaces that several geometric primitives occupy within the
algebra to demonstrate their sparsity. The type of a multivector
resulting from a product operation can thus be determined by
looking at the expected non-zero elements of the expression.
For a list of equations to construct the primitives, we refer the
reader to [17].
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Fig. 1: Non-zero elements of various geometric primitives in
their primal representations in conformal geometric algebra.
Boxes represent basis blades and colored boxes represent the
non-zero blades of the geometric primitive with the matching
color. It can be seen that of the 32 basis blades composing
multivectors only a sparse number is used for the representa-
tions. Note that geometric primitives are single-grade objects,
while transformations are mixed-grade.

The multivectors that describe rigid body motions are called
rotors, translators and more generally: motors. A general motor
is hence composed of a translator and a rotor, i.e.

M =TR =exp(B). (2)

The motors in geometric algebra form a Lie group, which is
an even sub-algebra M of ij,r Its associated Lie algebra is
the bivector algebra in the linear subspace B.

A motor applied to multivectors results in a sandwiching
product, similar to how quaternions rotate vectors

Y = MXM, A3)

where M stands for the reverse of a motor, which can thought
of as being similar to a conjugate quaternion.

Motors are isomorphic to dual quaternions [17], which
makes them also isomorphic to SE(3). They represent, how-
ever, a more general concept of transformations that is valid
in any dimension.

B. Geometric Algebra for Serial Manipulators

The forward kinematics of a kinematic chain of N joints
can easily be defined using motors [18]. Assuming that we
only have revolute joints, the forward motor M (q), given the
configuration g, can be computed with

N N
M(q) = HMz(%) = HMFsz(CL) 4


https://github.com/idiap/gafro/

The constant joint-specific motors Mp; represent the local
frames of the joints with the rotation in that frame expressed
by the rotor

1
Ri(gi) = exp (-2%‘31') ) )

where the bivectors B; essentially represent the screw axes of
the joints.

The analytic Jacobian is defined as the partial derivatives of
the forward kinematic function f(q) defined in Equation (4)
w.r.t. the joint angles, i.e.

OM(q) ) (6)
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Note that the size of the multivector matrix is J“(g) €
MM>N < GiﬁN with its elements corresponding to motors.

More information on using conformal geometric algebra for
the kinematics/dynamics computation of serial manipulators
can be found in [19].

C. Optimal Control using Geometric Algebra

Optimal control is a well-known technique that deals with
the problem of finding a control sequence that minimizes
an objective function. This objective function encodes the
requirements of the task as well as the constraints of the robot
and the environment. Modelling these mathematically requires
special care, since they will determine the quality of the
resulting solution. Furthermore optimal control can be applied
as solver to a model predictive control problem, which requires
fast convergence in order to achieve acceptable real time
control rates. We will show that the use of geometric algebra
for geometric primitives improves the clarity of equations
and thus reduces computational difficulties. The modelling
of the cost functions becomes easier and is done uniformly
across all different primitives and is done directly in the error
vector as opposed to the precision matrix, which results in
a low symbolic complexity of expressions and a geometric
intuitiveness, i.e. geometric meaning can directly be inferred.

Discrete-time optimal control aims at finding a control
sequence that minimizes the cost function

N-1
min L(z,u) = Ip(xy) + Y () + uld, @)
k=1

u

where I (xx) and I;(kxy) are the state dependent running
and final cost, respectively, and ||u||% is a regularization term
representing a control cost.

Formulations in geometric algebra can be seamlessly inte-
grated into optimization problems such as optimal control. To
that end target poses can easily be defined using the motor
manifold,

@[} @

We also exploit the nullspace representations of the primitives
for the formulation of the reaching objectives. By definition
of the OPNS, the outer product is zero for any point that is

on a geometric primitive. The multivector valued error of a
reaching objective can be defined as

E(q) = Xa A M(q)XM(q), ©)

where M (q)X M (q) corresponds to the tip of the end-effector
(with X = eg) and the reaching target X; can be any geo-
metric primitive of the algebra. The Jacobian of the reaching
task can be found by applying the chain rule to the multivector
expressions

TE (@) = Xa A (TH@X V(@) + M@XT (@), (10)

where J4 (q) is the analytic Jacobian and the reverse of a
multivector matrix is defined as the element-wise multivector
reverse. The above expressions are exception-free (e.g. divi-
sion by zero) and extend to other geometric primitives for X,
e.g. when using a line the objective becomes a pointing task.
This shows the strength of geometric algebra to uniformly
model objective functions involving the geometric primitives.

For example, using the cost function formulation of geomet-
ric algebra that was presented in Equation (9) various reaching
tasks can be defined. In general, for a reaching task, the end-
effector should reach a certain position. This can be modeled
by using a point for X. Then the desired multivector X4 can be
any other geometric primitive, which in turn means that instead
of only reaching a point, we can also reach lines, planes,
circles and spheres. Higher order quadrics are possible as
well, this however remains the subject of further investigations.
We present optimal trajectories that were computed using the
iterative linear quadratic regulator to explain how different
geometric primitives can be reached using the same structure
of the cost function, which is shown in Figure 2.
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Fig. 2: Examples of optimal trajectories for reaching tasks
using different geometric primitives. The initial configuration
is always shown in gray and the final one in white. The target
geometric primitive is shown in red. And the trajectory is
depicted as the frames corresponding to the end-effector.

Using a pointpair as the target presents a special opportunity
to model a control problem with options. A pointpair is the
result of the outer product of two points. From this outer
product nullspace representation, it follows that the outer



product of the pointpair and any point P = C(x) with = € R3
is zero if and only if P is identical to one of the points that
constructed the pointpair. The two possibilities that depend on
the initial configuration are shown in Figures 2e and 2f.

The modelling of a pointing task only requires the usage
of a line instead of a point for X in Equation (9). A possible
scenario where this task would be applied is tracking an object
with a robot arm endowed with a camera. The line can in
this case be interpreted as the line of sight of the camera.
Again, different geometric primitives can be used as the target,
since the intersection of a line with any other primitive can be
calculated in closed form without exceptions. An example is
shown in Figure 3.

Fig. 3: Optimal trajectory
example for a pointing task.
The target is shown as the
red point. The pointing line
is defined to be collinear
to the z-axis of the end-
effector frame. It is shown
in green for the initial con-
figuration and in blue for
the final configuration.

For more information on how to use geometric algebra for
optimal control in manipulation tasks, we refer the interested
reader to [19]. In that work we also present how this optimal
control framework can be integrated into model predictive
control using an inverse dynamics control approach.

D. Implementation Details

We implemented the presented robotics kinematics and
dynamics algorithms along with cost functions for optimal in
control in c¢++20. This resulted in the library gafro, which is
publicly available. In this section, we are presenting this library
on a high-level and highlight some of its features. A more in-
depth presentation, exhaustive benchmarks and comparison to
other libraries will be part of future work.

At the core of gafro is a custom implementation of con-
formal geometric algebra, that implements the multivectors as
templates that take a blade index list as their argument. It
exploits the sparsity of the multivector by only storing the
data blades that are non-zero by the structure of the objects.
Furthermore, it allows the straightforward usage of automatic
differentiation libraries such as autdiff ' for the computation of
gradients and hessians of multivector expressions. The geomet-
ric, inner and outer products are implemented as expression
templates, that are further exploiting this structure by only
evaluating the elements of the resulting type that are known
to be non-zero. The types are evaluated at compile time and
the evaluation tree is constructed, which is then evaluated at
runtime in a lazy fashion. One of our design goals for the
library was the seamless integration with existing tools for

Uhttps://autodiff.github.io/

robotics such as libraries for optimization and optimal control.
To this end, we used the Eigen library 2, which is de facto the
standard tool in robotics, to implement the sparse parameter
vector of the multivectors.

Since this library implements robot kinematics and dynam-
ics algorithms, we are comparing and benchmarking gafro
against several libraries that are commonly used in robotics
applications. These libraries include Raisim [20], Pinocchio
[21] and KDL [22]. An excerpt of the benchmarking results
can be found in Figure 4. As can be seen, our library can
compute these important quantities considerably faster than the
other libraries that are based on homogeneous transformation
matrices.

1.6e+03:

— gafro
= Faisim

1.4e+03 ﬂ}?f_’“hi"

1.2e+03
1e+03;
800

time [ns]

6001

400,
200y I I
0

Fig. 4: Benchmark results for gafro compared to Raisim,
Pinocchio and KDL. The four bars on the left correspond to the
forward kinematics and the ones on the right to the Jacobian
computation. The benchmarks were all performed on an AMD
Ryzen 7 4800U CPU using the compiler flags ~03 -msse3
-march=native. The presented results are the average of
10000 executions with 10 repetitions.

III. CONCLUSION

We presented in this paper the usage of geometric algebra
for the modelling of optimal control tasks and how to use
the dynamics of serial manipulators computed with geometric
algebra for inverse dynamics control.

The provided library, gafro, is currently specialized for
conformal geometric algebra. The implementation of the mul-
tivectors and expressions that define the algebra is generic.
Thus it would be possible to use geometric algebras with
different signatures, which can be used to explore the usage
of different geometric primitives such as quadric surfaces in
this optimal control framework.

Higher order quadric surfaces such as cones and paraboloids
in Gg 3 [23] or ellipsoids and hyperboloids in Gg ¢ [24] are
still a topic of ongoing research. In theory it should be possible
to use them seamlessly in combination with the methods that
we presented in this paper, since the properties of the different
geometric algebras such as the outer product nullspace, which
we rely on, remain the same. It is therefore the topic of future
work to investigate the integration of these algebras into our
formulation. The benefit of this would be a more versatile and
generic modeling of surfaces that can be exploited for various
manipulation tasks.

Zhttps://eigen.tuxfamily.org
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